精英家教网 > 高中数学 > 题目详情
已知函数f(θ)=
sinθ
2+cosθ
,则 f′(0)=______.
函数f(θ)=
sinθ
2+cosθ

则 f′(θ)=
cosθ(2+cosθ)-sinθ×(-sinθ)
(2+cosθ)2
=
1+2cosθ
(2+cosθ)2

所以f′(0)=
1+2
(2+1)2
=
1
3

故答案为
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1a
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)(x-b)(a,b∈R),函数f(x)的导函数f′(x).
(Ⅰ)若a=b=1,求函数f(x)的单调递增区间;
(Ⅱ)若b=0,不等式2xlnx≤f′(x)+4ax+1对于任意的正数x都成立,求实数a的取值范围;
(Ⅲ)若0<a<b,a+b<2
3
,且函数f(x)在x=s和x=t处取得极值,试证明:对于曲线上的点A(s,f(s)),B(t,f(t)),向量
OA
OB
不可能垂直(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)
(Ⅰ)设非空集合S={x|m≤x≤l}满足:当x∈S时有x2∈S,给出下列四个结论:
①若m=2,则l=4
②若m=-
1
2
,则
1
4
≤l≤1

③若l=
1
2
,则-
2
2
≤m≤0
④若m=1,则S={1},
其中正确的结论为
②③④
②③④

(Ⅱ)已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若对于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,则b的取值范围为
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.

查看答案和解析>>

同步练习册答案