精英家教网 > 高中数学 > 题目详情
15、等差数列{an}的前n项和为Sn,若S7>S8>S6,下列结论:(1)a7=0;(2)a8<0;(3)S13>0(4);(4)S14<0,其中正确的结论是
(2)(3)
分析:由已知条件S7>S8?S7>S7+S8?a8<0,可知(2)正确;S8>S6?S6+a7+a8>S6?a8+a7>0;S7>S6?S6+a7>S6?a7>0.知(1)错误;由S14=14(a8+a7>0,知(4)错误;由S13=13a70,知(3)正确.
解答:解:由已知条件S7>S8?S7>S7+S8?a8<0,
∴(2)正确;
S8>S6?S6+a7+a8>S6?a8+a7>0;
S7>S6?S6+a7>S6?a7>0.
知(1)错误;
由S14=14(a8+a7>0,知(4)错误;
由S13=13a70,知(3)正确.
故答案为(2)(3)
点评:本题考查了等差数列的性质,解答本题要灵活应用等差数列性质.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若-a7<a1<-a8,则必定有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足a2=6,S5=50,数列{bn}的前n项和Tn满足Tn+
1
2
bn=1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}为等比数列;
(Ⅲ)记cn=
1
4
anbn
,数列{cn}的前n项和为Rn,若Rn<λ对n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,a1=1;等比数列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an与bn
(Ⅱ)设cn=an+2bn(n∈N*),数列{cn}的前n项和为Tn.若对一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的(  )
A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案