精英家教网 > 高中数学 > 题目详情
在约束条件
2x+y≤4
x+y≤3
x≥0,y≥0
下,目标函数z=3x+2y的最大值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答: 解:作出不等式组对于的平面区域如图:
由z=3x+2y,则y=-
3
2
x+
z
2

平移直线y=-
3
2
x+
z
2
,由图象可知当直线y=-
3
2
x+
z
2

经过点B时,直线y=-
3
2
x+
z
2
的截距最大,此时z最大,
2x+y=4
x+y=3
,解得
x=1
y=2
,即B(1,2),
此时zmin=3×1+2×2=7,
故答案为:7
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2}的不同分拆种数是(  )
A、8B、9C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinπx的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+1)x-4(a+5),g(x)=ax2-x+5,其中a∈R
(1)若函数f(x),g(x)存在相同的零点,求a的值
(2)若存在两个正整数m,n,当x0∈(m,n)时,有f(x0)<0与g(x0)<0同时成立,求n的最大值及n取最大值时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算cos45°cos15°-sin45°cos75°的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
a2
b2
=
a2+c2-b2
b2+c2-a2
,则△ABC的形状为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D是△ABC中BC边的中点,点F在线段AD上,且|
AF
|=2|
FD
|,若
AB
=
a
AC
=
b
,试用
a
b
表示
AF

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间中的直线l和两个不同的平面α、β,且l?α,l?β.若α⊥β,则命题p:“l⊥β”是命题q:“l∥α”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:x∈{x|y=lg(x-1)},q:x∈{x|2-x<1},则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案