精英家教网 > 高中数学 > 题目详情
8.已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则(  )
A.ab≤$\frac{1}{8}$B.ab≥$\frac{1}{8}$C.ab$≥\frac{1}{4}$D.ab$≤\frac{1}{4}$

分析 由条件利用一元二次方程根的分布与系数的关系,二次函数的性质可得2au2-u+b=0有解,2au2+u+b=0有解,故有△=1-8ab≥0,由此得出结论.

解答 解:由题意可得b2-4ac≥0,还可得到$\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$=b2-4ac,或$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$=b2-4ac.
设u=b2-4ac,则 2au2-u+b=0,或2au2+u+b=0,
再根据这两个关于u的方程都有实数解,故它们的判别式都大于或等于零,
故有△=1-8ab≥0,由此求得ab≤$\frac{1}{8}$,
故选:A.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=2-|x|-m的图象与x轴有交点,则m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.半径为6的圆O的两条弦AB、CD相交于圆内一点P,已知PA=PB=4PC,求三角形OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.图是截去了一个角的正方体,则它的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=1,BC=2,AA1=4.当E为CC1中点时,
(1)标出所有点坐标;
(2)求异面直线AE与CF所成角的余弦值;
(3)求面CFB1,AB1E的法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,A、B、C,O1,O2∈平面α,AB=BC=1,∠ABC=90°,D为动点,DC=$\sqrt{3}$,且DC⊥BC.当点D从O1顺时针转动到O2的过程中,异面直线AD与BC所成角的余弦值(  )
A.一直变小B.一直变大
C.先变小,后变大D.先变小,再变大,后变小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点.
(Ⅰ)求证:EF⊥平面A1D1B;
(Ⅱ)求二面角F-DE-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设有甲乙两个公司,甲公司的资产数为800万,资产年增长率为18%,乙公司的资产数为1200万,资产的年增长率为8%,设若干年内两公司的资产增长率不变.
(1)试建立这两个公司资产y与经过年数的函数关系;
(2)试预测经过多少年后,甲公司的资产数超过乙公司的资产数(x∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.参数方程$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=-1+2co{s}^{2}θ}\end{array}\right.$(θ为参数)化为普通方程是(  )
A.2x-y+5=0B.2x+y-5=0C.2x-y+5=0(2≤x≤3)D.2x+y-5=0(2≤x≤3)

查看答案和解析>>

同步练习册答案