精英家教网 > 高中数学 > 题目详情
20.某公司准备招聘一批员工,有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,则选取的第二人与公司所需专业不对口的概率是(  )
A.$\frac{5}{19}$B.$\frac{1}{19}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 求出从经过初试的20人中任选2人的所有不同方法种数,再分类求出选到第二人与公司所需专业不对口的选法种数,利用古典概型概率计算公式得答案.

解答 解:从经过初试的20人中任选2人,共有${A}_{20}^{2}$=20×19种不同选法.
第一个人面试后,则选到的第二人与公司所需专业不对口的选法分为两类:
第一类、第一个人与公司专业对口的选法为${C}_{15}^{1}{C}_{5}^{1}$;
第二类、第一个人与公司专业不对口的选法为${C}_{5}^{1}{C}_{4}^{1}$.
故第一个人面试后,选到第二人与公司所需专业不对口的选法共15×5+5×4=19×5.
∴选取的第二人与公司所需专业不对口的概率是$\frac{19×5}{20×19}=\frac{1}{4}$.
故选:C.

点评 本题考查古典概型概率计算公式的应用,对题意理解是关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知正三棱柱ABC-A1B1C1的所有顶点都在球O的球面上,底面△ABC是边长为3的正三角形,侧棱长为2,则球O的表面积为(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x3-$\frac{3}{2}$x2+$\frac{3}{4}$x+$\frac{1}{8}$,则$\sum_{i=1}^{2016}$($\frac{k}{2017}$)的值为(  )
A.2016B.1008C.504D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如表(假设该区域空气质量指数不会超过300):
空气质量指数(0,50](50,100](100,150](150,200](200,250](250,300]
空气质量等级1级优2级良3级轻度
污染
4级中度
污染
5级重度
污染
6级严重污染
该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)用分层抽样的方法共抽取10天,则空气质量指数在(0,50],(50,100],(100,150]的天数中各应抽取几天?
(Ⅲ)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为2000元,空气质量等级为3级时每天需净化空气的费用为4000元.若在(Ⅱ)的条件下,从空气质量指数在(0,150]的天数中任意抽取两天,求这两天的净化空气总费用为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,则其中2人恰好乘坐同一部电梯的概率为(  )
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{9}{32}$D.$\frac{7}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面直角坐际系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).
(I)写出曲线C1的直角坐标方程并判断点(1,$\frac{π}{4}$)和曲线C1的位置关系.
(Ⅱ)若曲线C1与曲线C2距离的交点为A,B且|AB|=$\frac{4\sqrt{5}}{5}$,求曲线C2的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A=B={(x,y)|x,y∈R},f是A到B的一个映射,并满足f:(x,y)→(-xy,x-y)
(1)A中的哪一个元素对应B中的元素(3,4)?
(2)试探索B中哪些元素可以由A中元素对应而得;
(3)求B中元素(a,b)在A中有且只有一个与它对应时,a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:表1:男生上网时间与频数分布表
上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人数525302515
表2:女生上网时间与频数分布表
上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人数1020402010
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的2×2列联表(此表应画在答题卷上),并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3:
上网时间少于60分钟上网时间不少于60分钟合计
男生6040100
女生7030100
合计13070200
附:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C:f(x)=x3-x+3
(1)利用导数的定义求f(x)的导函数f'(x);
(2)求曲线C上横坐标为1的点处的切线方程.

查看答案和解析>>

同步练习册答案