如图,三棱柱
的底面是边长为
的正三角形,侧棱垂直于底面,侧棱长为
,D为棱
的中点。![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的大小.
(Ⅰ)参考解析;(Ⅱ)![]()
解析试题分析:(Ⅰ)要证明
平面
,主要是通过线面平行的判断定理,在平面内找一条直线与已知直线平行,通过三角形的中位线即可得到;
(Ⅱ)依题意底面是正三角形且
,又可证明
.即可得到所求的二面角
的平面角为
,从而通过解直角三角形即可得到二面角的大小.本题关键是通过了解线面的关系找出二面角的平面角.
试题解析:(Ⅰ)连接
交
于点O,连接OD,则OD为
中
边上的中位线,所以
.又
平面ABD,
平面ABD,所以
平面ABD.
(Ⅱ)因为
为等边三角形,D为AC中点,所以
,由侧棱垂直于底面知,三棱柱为直三棱柱,所以平面
平面
.又平面ABC
平面
=AC,BD
平面ABC,所以BD
平面
,又AD
平面
,![]()
平面
,所以AD
BD, ![]()
BD,故
为二面角
的平面角,由AC=2,
知在
中,
.所以
.故所求二面角的大小为
.
考点:1.线面平行的判定.2.面面关系.3.二面角的大小.
科目:高中数学 来源: 题型:解答题
已知三棱柱
中,平面
⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。![]()
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2.![]()
(1)求证:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.![]()
(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com