精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=
1
2
an=an-1+(
1
2
)n
,(n∈N*),则an=
 
考点:数列递推式
专题:等差数列与等比数列
分析:本题可以构造新数列研究数列的通项,也可以用叠加法.
解答: 解:∵an=an-1+(
1
2
)n
,(n∈N*),
an+(
1
2
)n=an-1+(
1
2
)n-1

∵a1=
1
2

a1+
1
2
=1

∴数列{a n+(
1
2
)n
}是首项为1的常数数列,
∴a n+(
1
2
)n
=1,
an=1-
1
2n
,(n∈N*).
点评:本题考查了构造法研究数列通项,本题难度适中,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+1-a在区间(0,1)上有两个零点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论成立的个数为(  )
A、直线m平行于平面α内的无数条直线,则m∥α
B、若直线m垂直于平面α内的无数条直线,则m⊥α
C、若平面α⊥平面β,直线m在α内,则m⊥β
D、若直线m⊥平面α,n在平面α内,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的单调增区间和最小值;
(2)若函数y=f(x)与函数y=g(x)在交点处存在公共切线,求实数a的值;
(3)若x∈(0,e2]时,函数y=f(x)的图象恰好位于两条平行直线l1:y=kx;l2:y=kx+m之间,当l1与l2间的距离最小时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若可行域为式子中的x、y满足约束条件
y≤x
x+y≤1
y≥-1.

(1)求可行域的面积S;
(2)求z=
y+1
x+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lg|x-1|-m有两个零点x1和x2,则x1+x2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
e
1
e
2
是两个不共线的向量,若
a
=2
e
1
-
e
2
b
=
e
1
e
2
共线,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“a+b≠3”是“a≠1或b≠2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要

查看答案和解析>>

同步练习册答案