精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax2+x-lnx,(a>0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设f(x)极值点为x0,若存在x1,x2∈(0,+∞),且x1≠x2,使f(x1)=f(x2),求证:x1+x2>2x0

分析 (Ⅰ)先求出函数的定义域,求出函数f(x)的导函数,在定义域下令导函数大于0得到函数的递增区间.即可求出单调减区间.
(Ⅱ)要证x1+x2>2x0,需证$\frac{{{x_1}+{x_2}}}{2}>{x_0}$.由( I)知,${x_0}=\frac{{-1+\sqrt{8a+1}}}{4a}$,f′(x)=2ax+1-$\frac{1}{x}$在(0,+∞)上单调递增,只需证$f'(\frac{{{x_1}+{x_2}}}{2})>0…(7分)$.

解答 解:( I)f(x)定义域为(0,+∞),
f′(x)=$\frac{2a{x}^{2}+x-1}{x}$,
∵a>0,∴方程f′(x)=0有两个实根x1=$\frac{-1-\sqrt{1+8a}}{4a}$<0,x2=$\frac{-1+\sqrt{1+8a}}{4a}$>0,
当x∈(0,x2)时,f′(x)<0,当x∈(x2,+∞)时,f′(x)>0,
∴f(x)的单调增区间为:($\frac{-1+\sqrt{1+8a}}{4a}$,+∞)减区间为(0,$\frac{-1+\sqrt{1+8a}}{4a}$)
( II)要证x1+x2>2x0,需证$\frac{{{x_1}+{x_2}}}{2}>{x_0}$.
由( I)知,${x_0}=\frac{{-1+\sqrt{8a+1}}}{4a}$,f′(x)=2ax+1-$\frac{1}{x}$在(0,+∞)上单调递增,
∴只需证$f'(\frac{{{x_1}+{x_2}}}{2})>0…(7分)$.
不妨设x2>x1>0
由已知得$f({x_2})-f({x_1})=(ax_2^2+{x_2}-ln{x_2})-(ax_1^2+{x_1}-ln{x_1})$=$a(x_2^2-x_1^2)+({x_2}-{x_1})-(ln{x_2}-ln{x_1})$,=[a(x2+x1)+1](x2-x1)-(lnx2-lnx1)=0
∴$a({x_2}+{x_1})+1=\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}$…(9分)
∵$f'(x)=2ax+1-\frac{1}{x}$
∴$f'(\frac{{{x_1}+{x_2}}}{2})=a({x_1}+{x_2})+1-\frac{2}{{{x_1}+{x_2}}}=\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}-\frac{2}{{{x_1}+{x_2}}}$…(11分)
法1:$f'(\frac{{{x_1}+{x_2}}}{2})$=$\frac{1}{{{x_2}-{x_1}}}(ln{x_2}-ln{x_1}-\frac{{2{x_2}-2{x_1}}}{{{x_2}+{x_1}}})$
令$g(x)=ln{x_2}-lnx-\frac{{2{x_2}-2x}}{{{x_2}+x}},(x∈(0,{x_2}))$
∴$g'(x)=-\frac{{{{({x_2}-x)}^2}}}{{x{{({x_2}+x)}^2}}}<0$,∴g(x)在(0,x2)单调递减,
∴g(x1)>g(x2)=0,
又$\frac{1}{{{x_2}-{x_1}}}>0$,∴$f'(\frac{{{x_1}+{x_2}}}{2})>0$成立.∴结论成立.…(14分)
法2:f′( $\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{1}{{{x_2}-{x_1}}}[ln\frac{x_2}{x_1}-\frac{{2(\frac{x_2}{x_1}-1)}}{{1+\frac{x_2}{x_1}}}]$.
设$t=\frac{x_2}{x_1}$,$g(t)=lnt-\frac{2(t-1)}{1+t}(t>1)$.∵$g'(t)=\frac{{{{(t-1)}^2}}}{{t{{(t+1)}^2}}}>0$,
∴g(t)在(1,+∞)上是增函数,∴g(t)>g(1)=0,
即$ln\frac{x_2}{x_1}-\frac{{2(\frac{x_2}{x_1}-1)}}{{1+\frac{x_2}{x_1}}}>0$,
又∵$\frac{1}{{{x_2}-{x_1}}}>0$,∴f′($\frac{{x}_{1}+{x}_{2}}{2}$)>0成立.
∴结论成立.…(14分)

点评 本题考查了导数的综合应用及整体代换的思想应用,化简运算困难,要细心,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O为坐标原点,动点M到定直线y=1的距离等于d,并且满足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$为非负实数
(1)求动点M的轨迹C1的方程
(2)若将曲线C1向左平移一个单位得到曲线C2,试指出C2为何种类型的曲线;
(3)若0<k<1,F1、F2是(2)中曲线C2的两个焦点,当点P在C2上运动时,求∠F1PF2取得最大值时对应点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点P是椭圆上任意一点,F1、F2分别是椭圆的左右焦点,△PF1F2的面积最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)从圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x轴、y轴交于M、N两点时,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图几何体由前向后方向的正投影面是平面EFGH,则该几何体的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
x681012
y2356
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,则直线l与曲线C相交的弦长为$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知四棱锥P-ABCD底面ABCD是直角梯形,AB⊥AD,且AD与BC平行,AD=2AB=2BC=2,△PAD是以P为直角顶点的等腰直角三角形,且二面角P-AD-C为直二面角.
(1)求证:PD⊥平面PAB;
(2)求平面PAC与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义在R上的函数g(x)及二次函数h(x)满足:g(x)+2g(-x)=ex+$\frac{2}{e^x}$-9,h(-2)=h(0)=1,且h(-3)=-2.
(1)求g(x)和h(x)的解析式;
(2)对于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范围;
(3)设f(x)=$\left\{\begin{array}{l}g(x),(x>0)\\ h(x),(x≤0)\end{array}$,在(2)的条件下,讨论方程f[f(x)]=a+5的解的个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+ax+2是R上的偶函数,其中常数a∈R,则函数y=$\frac{f(x)}{x}$(x>0)的最小值为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案