分析 (Ⅰ)先求出函数的定义域,求出函数f(x)的导函数,在定义域下令导函数大于0得到函数的递增区间.即可求出单调减区间.
(Ⅱ)要证x1+x2>2x0,需证$\frac{{{x_1}+{x_2}}}{2}>{x_0}$.由( I)知,${x_0}=\frac{{-1+\sqrt{8a+1}}}{4a}$,f′(x)=2ax+1-$\frac{1}{x}$在(0,+∞)上单调递增,只需证$f'(\frac{{{x_1}+{x_2}}}{2})>0…(7分)$.
解答 解:( I)f(x)定义域为(0,+∞),
f′(x)=$\frac{2a{x}^{2}+x-1}{x}$,
∵a>0,∴方程f′(x)=0有两个实根x1=$\frac{-1-\sqrt{1+8a}}{4a}$<0,x2=$\frac{-1+\sqrt{1+8a}}{4a}$>0,
当x∈(0,x2)时,f′(x)<0,当x∈(x2,+∞)时,f′(x)>0,
∴f(x)的单调增区间为:($\frac{-1+\sqrt{1+8a}}{4a}$,+∞)减区间为(0,$\frac{-1+\sqrt{1+8a}}{4a}$)
( II)要证x1+x2>2x0,需证$\frac{{{x_1}+{x_2}}}{2}>{x_0}$.
由( I)知,${x_0}=\frac{{-1+\sqrt{8a+1}}}{4a}$,f′(x)=2ax+1-$\frac{1}{x}$在(0,+∞)上单调递增,
∴只需证$f'(\frac{{{x_1}+{x_2}}}{2})>0…(7分)$.
不妨设x2>x1>0
由已知得$f({x_2})-f({x_1})=(ax_2^2+{x_2}-ln{x_2})-(ax_1^2+{x_1}-ln{x_1})$=$a(x_2^2-x_1^2)+({x_2}-{x_1})-(ln{x_2}-ln{x_1})$,=[a(x2+x1)+1](x2-x1)-(lnx2-lnx1)=0
∴$a({x_2}+{x_1})+1=\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}$…(9分)
∵$f'(x)=2ax+1-\frac{1}{x}$
∴$f'(\frac{{{x_1}+{x_2}}}{2})=a({x_1}+{x_2})+1-\frac{2}{{{x_1}+{x_2}}}=\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}-\frac{2}{{{x_1}+{x_2}}}$…(11分)
法1:$f'(\frac{{{x_1}+{x_2}}}{2})$=$\frac{1}{{{x_2}-{x_1}}}(ln{x_2}-ln{x_1}-\frac{{2{x_2}-2{x_1}}}{{{x_2}+{x_1}}})$
令$g(x)=ln{x_2}-lnx-\frac{{2{x_2}-2x}}{{{x_2}+x}},(x∈(0,{x_2}))$
∴$g'(x)=-\frac{{{{({x_2}-x)}^2}}}{{x{{({x_2}+x)}^2}}}<0$,∴g(x)在(0,x2)单调递减,
∴g(x1)>g(x2)=0,
又$\frac{1}{{{x_2}-{x_1}}}>0$,∴$f'(\frac{{{x_1}+{x_2}}}{2})>0$成立.∴结论成立.…(14分)
法2:f′( $\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{1}{{{x_2}-{x_1}}}[ln\frac{x_2}{x_1}-\frac{{2(\frac{x_2}{x_1}-1)}}{{1+\frac{x_2}{x_1}}}]$.
设$t=\frac{x_2}{x_1}$,$g(t)=lnt-\frac{2(t-1)}{1+t}(t>1)$.∵$g'(t)=\frac{{{{(t-1)}^2}}}{{t{{(t+1)}^2}}}>0$,
∴g(t)在(1,+∞)上是增函数,∴g(t)>g(1)=0,
即$ln\frac{x_2}{x_1}-\frac{{2(\frac{x_2}{x_1}-1)}}{{1+\frac{x_2}{x_1}}}>0$,
又∵$\frac{1}{{{x_2}-{x_1}}}>0$,∴f′($\frac{{x}_{1}+{x}_{2}}{2}$)>0成立.
∴结论成立.…(14分)
点评 本题考查了导数的综合应用及整体代换的思想应用,化简运算困难,要细心,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 6 | 8 | 10 | 12 |
| y | 2 | 3 | 5 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com