精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x2+ax+2是R上的偶函数,其中常数a∈R,则函数y=$\frac{f(x)}{x}$(x>0)的最小值为2$\sqrt{2}$.

分析 利用偶函数求出a,然后利用基本不等式求解最小值即可.

解答 解:函数f(x)=x2+ax+2是R上的偶函数,可知a=0,
又x>0
函数y=$\frac{f(x)}{x}$=x+$\frac{2}{x}$≥2$\sqrt{x•\frac{2}{x}}$=2$\sqrt{2}$,当且仅当x=$\sqrt{2}$时取等号.
故答案为:2$\sqrt{2}$.

点评 本题考查二次函数的性质,基本不等式在最值中的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+x-lnx,(a>0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设f(x)极值点为x0,若存在x1,x2∈(0,+∞),且x1≠x2,使f(x1)=f(x2),求证:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,某简单几何体的一个面ABC内接于圆M,AB是圆M的直径,CF∥BE,BE⊥平面ABC,且AB=2,AC=1,BE+CF=7.
(Ⅰ)求证:AC⊥EF:
(Ⅱ)当CF为何值时,平面AEF与平面ABC所成的锐角取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x=-$\frac{1}{4}$y2的焦点坐标是(  )
A.(-1,0)B.(0,-1)C.(-$\frac{1}{16}$,0)D.(0,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数${f_1}(x)=\frac{1}{2}{x^2},{f_2}(x)=alnx$(其中a>0).
(1)求函数f(x)=f1(x1)•f2(x2)的极值;
(2)若函数g(x)=f1(x1)-f2(x2)+(a-1)x在区间$(\frac{1}{e},e)$内有两个零点,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.哈三中某兴趣小组为了调查高中生的数学成绩是否与物理成绩有关系,在高二年级随机调查了50名学生,调查结果表明:在数学成绩较好的25人中有18人物理成绩好,另外7人物理成绩一般;在数学成绩一般的25人中有6人物理成绩好,另外19人物理成绩一般.
(Ⅰ) 试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出是否有99.9%把握认为高中生的数学成绩与物理成绩有关系.
数学成绩好数学成绩一般总计
物理成绩好
物理成绩一般
总计
(Ⅱ)  现将4名数学成绩好且物理成绩也好的学生分别编号为1,2,3,4,将4名数学成绩好但物理成绩一般的学生也分别编号1,2,3,4,从这两组学生中各任选1人进行学习交流,求被选取的2名学生编号之和不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex
(1)过点(-1,0)作f(x)=ex的切线,求此切线的方程.
(2)若f(x)≥kx+b对任意x∈[0,+∞)恒成立,求实数k,b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,PA⊥平面ABCD.
(1)求PB与平面PCD所成角的正弦值;
(2)棱PD上是否存在一点E满足∠AEC=90°?若存在,求AE的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案