精英家教网 > 高中数学 > 题目详情
设集合A={x|x2-3x-4≥0},B={x|2a≤x≤a+2}.
(Ⅰ)若A∩B≠∅,求实数a的取值范围;
(Ⅱ)若A∩B=B,求实数a的取值范围.
考点:交、并、补集的混合运算
专题:集合
分析:(Ⅰ)求出A中不等式的解集确定出A,根据A∩B≠∅,求出实数a的取值范围即可;
(Ⅱ)根据A与B的交集为B,确定出a的范围即可.
解答: 解:(Ⅰ)由A中不等式变形得:(x-4)(x+1)≥0,
解得:x≥4或x≤-1,即A={x|x≥4或x≤-1},
∵B={x|2a≤x≤a+2},且A∩B≠∅,
∴2a≤-1或a+2≥4,且2a≤a+2,
解得:a≤-
1
2
或a=2,
则实数a的取值范围为a≤-
1
2
或a=2;
(Ⅱ)∵A∩B=B,∴B⊆A,
∴a+2≤-1或2a≥4,
解得:a≤-3或a≥2.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥AC,PC⊥BC,M为PB的中点,D为AB的中点,且△AMB为正三角形.
(1)求证:BC⊥平面PAC;
(2)若BC=4,PB=10,求四棱锥C-ADMP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos(-θ),2sin(-θ)),
b
=(cos(90°-θ),sin(90°-θ))
(1)求证:
a
b

(2)若存在不等于0的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
满足
x
y
.试求此时
k+t2
t
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在三角形ABC中,AB=3,AC=4,BC=5.
(1)求向量
AB
+
AC
+
BC
的模;
(2)若长为10的线段PQ以点A为中点,问
PQ
BC
的夹角θ取何值时
BP
CQ
的值最大?并求这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
2+y2=36,N(
5
,0),点P是圆M上的任意一点,线段NP的垂直平分线和半径MP相较于点Q.
(Ⅰ)当点P在圆M上运动时,求点Q的轨迹C的方程;
(Ⅱ)若圆x2+y2=4的切线与曲线C相交于A、B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
(1)求证:平面CDE⊥平面ABC
(2)若AB=DC=3,BC=5,BD=4,求几何体ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+3x+b(a<0,a、b∈R).设关于x的方程f(x)=0的两个实根分别为α、β
(1)若|α-β|=1,求a、b的关系式;
(2)若a、b均为负整数,且|α-β|=1,求f(x)的解析式;
(3)在(2)的条件下,若方程f(x)=(2m+2)x+2m+4至少有一个正根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,左、右顶点分别是A、C,上顶点为B,记△FBC外接圆为圆P.
(Ⅰ)判断直线AB和圆P能否相切?并说明理由;
(Ⅱ)若椭圆短轴长为2
3
,且椭圆上的点到F点最近距离为1,M、N是该椭圆上满足|OM|2+|ON|2=7的两点,求证:|kOM•kON|是定值,并求出此定值;
(Ⅲ)是根据(Ⅱ)的求解过程和结果,将命题进行推广,得到一个关于椭圆的一般性结论(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=1,
a
b
=1.
(1)求|
a
+
b
|的值;   
(2)若k
a
+
b
a
-3
b
垂直,求k的值.

查看答案和解析>>

同步练习册答案