精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

【答案】(1);(2)证明见解析,

【解析】

1)由题意,又,由此可求出的值,从而求得椭圆的方程.2)椭圆方程化为.PQ的方程为,代入椭圆方程得:.)设PQ的中点为,求出,只要,即证得OT平分线段PQ.)可用表示出PQTF可得:化简得:.再根据取等号的条件,可得T的坐标.

1,又.

2)椭圆方程化为.

)设PQ的方程为,代入椭圆方程得:.

PQ的中点为,则

TF的方程为,则

所以,即OTPQ的中点,即OT平分线段PQ.

,又,所以

.

时取等号,此时T的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为菱形,且,E的中点.

(1)求证:平面平面;

(2)棱上是否存在点F,使得平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形是正方形,平面平面.

(1)求证:平面

(2)在线段上是否存在点,使得平面与平面所成的锐二面角的大小为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,有如下结论:

①曲线C关于原点对称;

②曲线C关于直线x±y=0对称;

③曲线C是封闭图形,且封闭图形的面积大于2π;

④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;

⑤曲线C与曲线4个交点,这4点构成正方形.其中所有正确结论的序号为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中,底面为矩形,,,平面平面,为等腰直角三角形,且,为底面的中心.

(1)求异面直线所成角的余弦值;

(2)若中点,在棱上,若,,且二面角的正弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点EF分别是ABPC的中点.

(1)求证:AB⊥平面PAD

(2)求证:EF//平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河道上有一抛物线型拱桥,在正常水位时,拱圈最高点距水面8m,拱圈内水面宽24m,一条船在水面以上部分高6.5m,船顶部宽6m

1)试建立适当的直角坐标系,求拱桥所在的抛物线的标准方程;

2)近日水位暴涨了1.54m,为此,必须加重船载,降低船身,才能通过桥洞,试问:船身至少应该降低多少?(精确到0.1m

查看答案和解析>>

同步练习册答案