精英家教网 > 高中数学 > 题目详情

【题目】关于曲线,有如下结论:

①曲线C关于原点对称;

②曲线C关于直线x±y=0对称;

③曲线C是封闭图形,且封闭图形的面积大于2π;

④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;

⑤曲线C与曲线4个交点,这4点构成正方形.其中所有正确结论的序号为__

【答案】①②④⑤

【解析】

分析关于原点对称的两点,是否都在曲线上,即可判断①;分析关于直线对称,点,点是否都在曲线上,即可判断②;根据,可判断③;联立方程,可判断④⑤;

解:对于①,将方程中的换成换成方程不变,故①正确;

对于②,将方程中的换成换成方程不变;或将方程中的换成换成方程不变,故②正确;

对于③,由方程得,故曲线不是封闭图形,故③错;

对于④,联立曲线,方程组无解,无公共点,故④正确;

对于⑤,当时,联立曲线只有一解,根据对称性,共有有4个交点,这4点构成正方形,正确.

故答案为:①②④⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C上的点到右焦点F的最大距离为,离心率为

求椭圆C的方程;

如图,过点的动直线l交椭圆CMN两点,直线l的斜率为A为椭圆上的一点,直线OA的斜率为,且B是线段OA延长线上一点,且过原点O作以B为圆心,以为半径的圆B的切线,切点为,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷等差数列的各项均为整数,首项为、公差为是其前项和,是其中的三项,给出下列命题:

①对任意满足条件的,存在,使得一定是数列中的一项;

存在满足条件的数列,使得对任意的成立;

③对任意满足条件的,存在,使得一定是数列中的一项。

其中正确命题的序号为( )

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.

(1)求的直角坐标方程和的直角坐标;

(2)设交于两点,线段的中点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点,点关于轴的对称点为.

(1)求椭圆的方程;

(2)求证:三点共线;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:

年份

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

新能源产品年销售(万个)

1.6

6.2

17.7

33.1

55.6

(1)请画出上表中年份代码与年销量的数据对应的散点图,并根据散点图判断.

中哪一个更适宜作为年销售量关于年份代码的回归方程类型;

(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).

参考公式:.

参考数据:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的离心率为,直线交椭圆于两点,,且点在椭圆上,当时,.

(1)求椭圆方程;

(2)试探究四边形的面积是否为定值,若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线方程中的参数是,且有且只有一个公共点,求的普通方程;

(2)已知点,若曲线方程中的参数是,且相交于两个不同点,求的最大值.

查看答案和解析>>

同步练习册答案