【题目】关于曲线,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线有4个交点,这4点构成正方形.其中所有正确结论的序号为__.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:上的点到右焦点F的最大距离为,离心率为.
求椭圆C的方程;
如图,过点的动直线l交椭圆C于M,N两点,直线l的斜率为,A为椭圆上的一点,直线OA的斜率为,且,B是线段OA延长线上一点,且过原点O作以B为圆心,以为半径的圆B的切线,切点为令,求取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】无穷等差数列的各项均为整数,首项为、公差为,是其前项和,是其中的三项,给出下列命题:
①对任意满足条件的,存在,使得一定是数列中的一项;
②存在满足条件的数列,使得对任意的,成立;
③对任意满足条件的,存在,使得一定是数列中的一项。
其中正确命题的序号为( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线与轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点、,点关于轴的对称点为.
(1)求椭圆的方程;
(2)求证:、、三点共线;
(3)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
新能源产品年销售(万个) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)请画出上表中年份代码与年销量的数据对应的散点图,并根据散点图判断.
与中哪一个更适宜作为年销售量关于年份代码的回归方程类型;
(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).
参考公式:,.
参考数据:,,,,,,,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的离心率为,直线:交椭圆于,两点,,且点在椭圆上,当时,.
(1)求椭圆方程;
(2)试探究四边形的面积是否为定值,若是,求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线方程中的参数是,且与有且只有一个公共点,求的普通方程;
(2)已知点,若曲线方程中的参数是,,且与相交于,两个不同点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com