【题目】在平面直角坐标系
中,曲线
的参数方程为
,以原点0为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若曲线
方程中的参数是
,且
与
有且只有一个公共点,求
的普通方程;
(2)已知点
,若曲线
方程中的参数是
,
,且
与
相交于
,
两个不同点,求
的最大值.
科目:高中数学 来源: 题型:
【题目】关于曲线
,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线
有4个交点,这4点构成正方形.其中所有正确结论的序号为__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABC﹣A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,证明:A1C1∥l;
(2)求平面A1C1B与平面ABC所成二面角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在五边形
中,
,
,
,
,
是以
为斜边的等腰直角三角形.现将
沿
折起,使平面
平面
,如图②,记线段
的中点为
.
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆
,过定点
的直线
交圆
于
两点.
(1)若
,求直线
的斜率;
(2)求
面积的取值范围;
(3)若圆
内一点
的坐标是
,且过点
的直线交圆
于
两点,
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】河道上有一抛物线型拱桥,在正常水位时,拱圈最高点距水面8m,拱圈内水面宽24m,一条船在水面以上部分高6.5m,船顶部宽6m.
![]()
(1)试建立适当的直角坐标系,求拱桥所在的抛物线的标准方程;
(2)近日水位暴涨了1.54m,为此,必须加重船载,降低船身,才能通过桥洞,试问:船身至少应该降低多少?(精确到0.1m)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的
个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计
元/月的流量包将有多少人购买?
(Ⅱ)若把
元/月以下(不包括
元)的流量包称为低价流量包,
元以上(包括
元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过
的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
![]()
其中![]()
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).
![]()
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com