【题目】如图①,在五边形
中,
,
,
,
,
是以
为斜边的等腰直角三角形.现将
沿
折起,使平面
平面
,如图②,记线段
的中点为
.
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成的锐二面角的大小.
【答案】(1)见解析(2)45°
【解析】
【试题分析】(1)运用面面垂直的判定定理进行分析推证;(2)建立空间直角坐标系,借助空间向量的坐标形式运用向量的数量积公式进行分析求解:
(1)解:∵
,
是线段
的中点,∴
.
又∵
,∴四边形
为平行四边形,又
,∴
,
又∵
是等腰直角
的中点,∴
.
∵
,∴
平面
.
∵
平面
,
∴平面
平面
.
(2)∵平面
平面
,且
,∴
平面
,∴
.
∴
两两垂直,以
为坐标原点,以
所在直线分别为
轴建立如图所示的空间直角坐标系
.
![]()
∵
为等腰直角三角形,且
,
∴
,
∴
,
,
,
,
,
,
∴
,
,设平面
的一个法向量为
,则有
,∴
,取
,得
,
∵
平面
,∴平面
的一个法向量为
,
设平面
与平面
所成的锐二面角为
,则
,
∴平面
与平面
所成的锐二面角大小为
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
的极坐标为
.
(1)求
的直角坐标方程和
的直角坐标;
(2)设
与
交于
,
两点,线段
的中点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的离心率为
,直线
:
交椭圆于
,
两点,
,且点
在椭圆
上,当
时,
.
(1)求椭圆方程;
(2)试探究四边形
的面积是否为定值,若是,求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,其两个顶点和两个焦点构成的四边形面积为
.
(1)求椭圆C的方程;
(2)过点
的直线l与椭圆C交于A,B两点,且点M恰为线段AB的中点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为
的函数
图像的两个端点为
、
,向量
,
是
图像上任意一点,其中
,若不等式
恒成立,则称函数
在
上满足“
范围线性近似”,其中最小正实数
称为该函数的线性近似阈值.若函数
定义在
上,则该函数的线性近似阈值是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
,以原点0为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若曲线
方程中的参数是
,且
与
有且只有一个公共点,求
的普通方程;
(2)已知点
,若曲线
方程中的参数是
,
,且
与
相交于
,
两个不同点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线
的左、右焦点为
,
,
为
右支上的动点(非顶点),
为
的内心.当
变化时,
的轨迹为( )
A.直线的一部分B.椭圆的一部分
C.双曲线的一部分D.无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于
的一元二次方程
,其中
是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数
;
(2)若
是从区间
中任取的一个数,
是从区间
中任取的一个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com