【题目】【浙江省名校协作体2017届高三上学期联考】已知椭圆![]()
,经过椭圆
上一点
的直线
与椭圆
有且只有一个公共点,且点
横坐标为
.
![]()
(1)求椭圆
的标准方程;
(2)若
是椭圆的一条动弦,且
,
为坐标原点,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】如图,在四凌锥S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1. ![]()
(1)求证:DM∥平面SAB;
(2)求四棱锥S﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,an=32,sn=63,
(1)若数列{an}为公差为11的等差数列,求a1;
(2)若数列{an}为以a1=1为首项的等比数列,求数列{am2}的前m项和sm′ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
中,
,
,
,
,
分别在
上,
,现将四边形
沿
折起,使
.
(1)若
,在折叠后的线段
上是否存在一点
,使得
平面
?若存在,求出
的值;若不存在,说明理由;
(2)求三棱锥
的体积的最大值,并求出此时点
到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的图象一个最高点为P(
,2),相邻最低点为Q(
,﹣2),当x∈[﹣
,
]时,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(x、y)满足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},则求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],则求x>y的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
底面
,底面
是直角梯形,
,
,
,
,点
在
上,且
.
![]()
(Ⅰ)已知点
在
上,且
,求证:平面
平面
;
(Ⅱ)当二面角
的余弦值为多少时,直线
与平面
所成的角为
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 则面AEF与面ABC所成的二面角的正切值等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
四边形
为直角梯形,
四边形
为等腰梯形,
且
(Ⅰ)若梯形
内有一点
,使得
平面
,求点
的轨迹;
(Ⅱ)求平面
与平面
所成的锐二面角的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com