精英家教网 > 高中数学 > 题目详情

【题目】【浙江省名校协作体2017届高三上学期联考】已知椭圆,经过椭圆上一点的直线与椭圆有且只有一个公共点,且横坐标为.

(1)求椭圆的标准方程

2)若椭圆的一条动弦为坐标原点面积的最大值.

【答案】(1);(2).

【解析】

试题分析:(1)利用点在椭圆上以及直线与椭圆只有一个公共点,建立关于的方程组,即可求解;(2)联立直线方程与椭圆方程,建立面积的函数关系式,求得函数的最值即可求解.

试题解析(1)在椭圆上,故,同时联立

,化简得,由

可得,故椭圆;(2)设,直线方程为:

联立,故

,得

故原点直线的距离

,则

时,

当斜率不存在时,的面积为,综合上述可得面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四凌锥S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.

(1)求证:DM∥平面SAB;
(2)求四棱锥S﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,an=32,sn=63,
(1)若数列{an}为公差为11的等差数列,求a1
(2)若数列{an}为以a1=1为首项的等比数列,求数列{am2}的前m项和sm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使.

(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;

(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象一个最高点为P( ,2),相邻最低点为Q( ,﹣2),当x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(x、y)满足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},则求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],则求x>y的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面,底面是直角梯形, ,点上,且

(Ⅰ)已知点上,且,求证:平面平面

(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 则面AEF与面ABC所成的二面角的正切值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面四边形为直角梯形, 四边形为等腰梯形,

(Ⅰ)若梯形内有一点,使得平面,求点的轨迹;

(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案