精英家教网 > 高中数学 > 题目详情
18.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到2×2列联表:
理科文科合计
141024
62026
合计203050
根据表中数据,计算选修文科与性别有关系出错的可能性约为多少.

分析 根据表中数据计算k2,对照临界值即可得出结论.

解答 解:利用列联表中的数据,计算
K2=$\frac{50{×(14×20-6×10)}^{2}}{20×30×24×26}$≈6.464>5.024,
对照临界值知,
选修文科与性别有关系出错的可能性低于0.025.

点评 本题考查了独立性检验的计算与应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)如果$cos(π-x)=\frac{{\sqrt{3}}}{2}$,x∈(0,π],求x的值
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列各式:13=1,13+23=32,13+23+33=62,13+23+33+43=102,…,由此推得:13+23+33…+n3=$\frac{{n}^{2}(n+1)^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若正项等比数列{an}满足a1-a3=-3,a1-a4=-7,则a5=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β∈(0,π),则“sinα+sinβ<$\frac{1}{3}$”是“sin(α+β)<$\frac{1}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是12600.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,M是以AB为直径的圆上一点,且AM=3,则$\overrightarrow{AM}$•$\overrightarrow{AB}$=(  )
A.$\frac{3\sqrt{3}}{2}$B.3C.$\frac{15\sqrt{3}}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知数列{an}的前n项和Sn=2n2-3n+1,求{an}的通项an
(2)在等差数列{an}中,a1=-3,11a5=5a8,求前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列给出的输入语句、输出语句和赋值语句:
(1)输出语句INPUTa,b,c;
(2)输入语句INPUT x=3;
(3)赋值语句3=A,
则其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案