精英家教网 > 高中数学 > 题目详情

三个数72,120,168的最大公约数是 .

 

24

【解析】

试题分析:利用辗转相除法,先求出其中二个数72,120,;120,168的最大公约数,之后我们易求出三个数72,120,168的最大公约数.

【解析】
120=72×1+48

72=48×1+24

48=24×2

∴72,120的最大公约数是24

168=120×1+48

120=48×2+24

48=24×2

故120,168的最大公约数为24

三个数72,120,168的最大公约数24.

故答案为:24.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-7 1.1什么叫优选法练习卷(解析版) 题型:填空题

选做题(从下列二题中任选做一题,若两题全做,则只按一题计分)

(优选法和实验设计初步选做题)某化工厂准备对一化工产品进行技术改造,决定优选加工温度,假定最佳温度在60°C到81°C之间,现用分数发进行优选,则第二个试点的温度为 .

(坐标系与参数方程选做题)在极坐标系中,定点A(1,),动点B在曲线ρ=2cosθ上移动,当线段AB最短时,点B的极径为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.4一次同余方程练习卷(解析版) 题型:填空题

(2013•永州一模)若两整数a,b除以同一个整数m,所得余数相同,则称a,b对模m同余.即当a,b,m∈z时,若=k(k∈z,k≠0),则称a、b对模m同余,用符号a=b(modm)表示.

(1)若6=b(mod2)且0<b<6,则b的所有可能取值为 ;

(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m﹣1项的和为60(m﹣1)时,则m= .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.1同余练习卷(解析版) 题型:选择题

设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余,记为a≡b(modm).已知a=2+C+C•2+C•22+…+C•219,b≡a(mon10),则b的值可以是( )

A.2015 B.2012 C.2008 D.2006

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.2最大公因数与最小公倍数 题型:填空题

1248和585的最大公约数是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.2最大公因数与最小公倍数 题型:选择题

在对16和12求最大公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的最大公约数是( )

A.4 B.12 C.16 D.8

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:填空题

把七进制中的最大三位数(666)7化为三进制的数为 3.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

将51化为二进制数得( )

A.100111 B.110110 C.110011 D.110101

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.

 

查看答案和解析>>

同步练习册答案