精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70
 
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的
绝对值不超过5的概率。
(参考数据:    
参考公式:回归直线方程,其中 )

(Ⅰ)解:
又已知 , 
于是可得: 
因此,所求回归直线方程为:
(Ⅱ)解: 根据上面求得的回归直线方程,当广告费支出为10万元时,
 (万元) 即这种产品的销售收入大约为82. 5万元. 


2
4
5
6
8

30
40
60
50
70

30.5
43.5
50
56.5
69.5
(Ⅲ)解:
基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),
(60,50),(60,70),(50,70)共10个
两组数据其预测值与实际值之差的绝对值都超过5:(60,50)
所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

⑴将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
⑵求调查中随机抽取了多少个学生的百米成绩;
⑶若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了若
干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组
[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如
图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下表的统计资料:
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)估计使用年限为.10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差
10
11
13
12
8
6
就诊人数
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
⑴求选取的2组数据恰好是相邻两个月的概率;
⑵若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程
⑶若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性www.ks5u.com回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下

性别
是否达标


合计
达标

______
_____
不达标
_____

_____
合计
______
______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:

 
优秀
非优秀
总计
甲班
10[来源:学科网ZXXK]
 
 
乙班
 
30
[来源:学#科#网]
合计
 
 
105
   已知在全部105人中抽到随机抽取2人为优秀的概率为
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
(3)若按下面的方法从甲班优秀的学生抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取的人的序号,试求抽到6或10的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x与y之间的一组数据

x
0
1
2
3
y
1
3
5
7
(1)画出散点图
(2)若x与y线性相关,写出线性回归方程必定经过的点
(3)若x与y线性相关求出线性回归方程,
(4)说出2个刻画回归效果的手段,假设R=0.74说明什么问题。
参考公式

查看答案和解析>>

同步练习册答案