精英家教网 > 高中数学 > 题目详情
6.设命题p:“若ex>1,则x>0”,命题q:“若a>b,则$\frac{1}{a}<\frac{1}{b}$”,则(  )
A.“p∧q”为真命题B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:命题p:“若ex>1,则x>0”是真命题,
命题q:“若a>b,则$\frac{1}{a}<\frac{1}{b}$”是假命题,如:a=1,b=-1,
故“p∨q”为真命题,
故选:B.

点评 本题考察了复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条直线A1x+B1y+C1=0,A2x+B2y+C2=0互相垂直的充分必要条件是(  )
A.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=-1$B.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=1$C.A1A2+B1B2=0D.A1A2-B1B2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z满足z(1+i)=2-4i,那么z=-1-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC; 
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AD}$等于(  )
A.$\overrightarrow{CD}$B.$\overrightarrow{DC}$C.$\overrightarrow{AD}$D.$\overrightarrow{CB}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.角α终边上一点的坐标为(1,2),则tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2为左、右焦点,M为椭圆上一点且MF2⊥x轴,设P是椭圆上任意一点,若△PF1F2面积的最大值是△OMF2面积的3倍(O为坐标原点),则该椭圆的离心率e=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一动点到x轴和y轴的距离之比为2,则动点的轨迹方程为y=±2x.

查看答案和解析>>

同步练习册答案