分析 作出f(x)与y=loga(x+2)的函数图象,根据交点个数判断函数值的大小关系,列出不等式组解出.
解答 解:∵当x>0时,f(x)=f(x-1),
∴f(x)在(0,+∞)上是周期为1的函数,
做出y=f(x)与y=loga(x+2)的函数图象,则两函数图象有2个交点,![]()
∴$\left\{\begin{array}{l}{lo{g}_{a}2>-1}\\{lo{g}_{a}3≤-1}\end{array}\right.$,解得$\frac{1}{3}≤a<\frac{1}{2}$.
故答案为:$[\frac{1}{3},\frac{1}{2})$.
点评 本题考查了函数零点与函数图象的关系,函数周期性的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com