分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,由此求出球O的半径,进而能求出球O的表面积.
解答 解:如图所示,当点C位于垂直于面AOB的直径端点时,![]()
三棱锥O-ABC的体积最大,
设球O的半径为R,此时${V}_{O-ABC}={V}_{C-AOB}=\frac{1}{3}×\frac{1}{2}×{R}^{2}×R$=$\frac{9\sqrt{π}}{2{π}^{2}}$,
解得R=$\frac{3}{\sqrt{π}}$,
∴球O的表面积为S=4πR2=4π×$\frac{9}{π}$=36.
故答案为:36.
点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,注意球、三棱锥的性质及构造法的合理应用.
科目:高中数学 来源: 题型:选择题
| A. | 若m⊥α,m∥n,n∥β,则 α⊥β | B. | 若α∥β,m?α,n?β,则 m∥n | ||
| C. | 若m⊥n,m?α,n?β,则α⊥β | D. | 若α⊥β,m?α,n?β,则m⊥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分条件 | B. | 必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10π}{3}-4$ | B. | $\frac{10π}{3}-8$ | C. | $\frac{16π}{3}-4$ | D. | $\frac{16π}{3}-8$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com