精英家教网 > 高中数学 > 题目详情
17.命题“?x∈R,x2-2x+2≥0”的否定是(  )
A.?x∈∅,x2-2x+2≥0B.?x∈R,x2-2x+2<0
C.?x0∈R,x02-2x0+2≥0D.?x0∈R,x02-2x0+2<0

分析 根据全称命题的否定是特称命题进行判断即可.

解答 解:命题是全称命题,则命题的否定是特称命题,
即?x0∈R,x02-2x0+2<0,
故选:D

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示的是某池塘中的浮萍蔓延的面积(m2)与时间t(月)的关系:f(t)=at,有以下叙述:
①这个指数函数的底数是2;
②浮萍每个月增长的面积都相等;
③浮萍从4m2蔓延到12m2需要经过1.5个月;
④对浮萍蔓延到的任意两个时间点t1,t2,都有$\frac{{f({t_1})-f({t_2})}}{{{t_1}-{t_2}}}>0$成立;
⑤若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为t1、t2、t3,则t1+t2=t3
其中正确的是(
A.①③④B.①③④⑤C.①④⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在复数范围内,纯虚数i的两个平方根为$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$,$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=i(3+i)的实部是(  )
A.1B.-1C.3D.3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.证明下列恒等式:
(1)tanθ•$\frac{1-sinθ}{1+cosθ}$=cotθ•$\frac{1-cosθ}{1+sinθ}$;
(2)$\frac{1+ta{n}^{4}α}{ta{n}^{2}α+co{t}^{2}α}$=tan2α;
(3)$\frac{1+cscα+cotα}{1+cscα-cotα}$=cscα+cotα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列四个命题:
①如果θ是第二象限角,则sinθ•tanθ<0;
②如果sinθ•tanθ<0,则θ是第二象限角;
③sin1•cos2•tan3>0;
④如果θ∈($\frac{3π}{2},2π$),则sin(π+θ)>0.
其中正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=3x+$\frac{12}{{x}^{2}}$(x>0)的最小值是(  )
A.6B.6$\sqrt{6}$C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a=${∫}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx,则($\frac{a}{π}x-\frac{1}{x}$)6的展开式中的常数项与x最低次幂项的系数比为(  )
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:一元二次不等式-x2-2(a-1)x-1<0的解集是全体实数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案