精英家教网 > 高中数学 > 题目详情

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为(
A.0.35
B.0.25
C.0.20
D.0.15

【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,则cos(α+ )=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线 为参数)和直线 为参数).

(1)将曲线的方程化为普通方程;

(2)设直线与曲线交于两点,且为弦的中点,求弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络营销部门为了统计某市网友20151111日在某网店的网购情况,随机抽查了该市100名网友的网购金额情况,得到如下频率分布直方图.

1)估计直方图中网购金额的中位数;

2)若规定网购金额超过15千元的顾客定义为网购达人,网购金额不超过15千元的顾客定义为非网购达人;若以该网店的频率估计全市非网购达人网购达人的概率,从全市任意选取3人,则3人中非网购达人网购达人的人数之差的绝对值为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.学#@

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (Ⅰ)当 时,求函数f(x)的值域;
(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若函数处的切线方程为,求的值;

(II)讨论方程的解的个数,并说明理由.

查看答案和解析>>

同步练习册答案