精英家教网 > 高中数学 > 题目详情
如图,在斜三棱柱ABC-A1B1C1中,四边形ABB1A1是菱形,四边形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°,D、E分别是AC、A1B的中点.
(Ⅰ)求证:平面CA1B⊥平面ABB1A1
(Ⅱ)求证:DE∥平面CBB1C1
(Ⅲ)求四面体A1ABC的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)由已知中四边形BCC1B1是矩形,AB⊥BC,我们易由线面垂直的判定定理得到CB⊥平面ABB1A1,再由面面垂直的判定定理,即可得到平面CA1B⊥平面ABB1A1
(Ⅱ)证明平面DEO∥平面CBB1C1,可得DE∥平面CBB1C1
(Ⅲ)证明A1O⊥平面ABC,可求四面体A1ABC的体积.
解答: (Ⅰ证明:∵四边形BCC1B1是矩形,AB⊥BC
∴AB⊥BC,BC⊥BB1,AB∩BB1=B
∴CB⊥平面ABB1A1
∵CB?平面CA1B
∴平面CA1B⊥平面ABB1A1
(Ⅱ)证明:取AB的中点O,连接OD,OE,则
∵D、E分别是AC、A1B的中点,
∴OD∥BC,OE∥AA1∥BB1
∵OD∩OE=O,BC∩BB1=B,
∴平面DEO∥平面CBB1C1
∵DE?平面DEO,
∴DE∥平面CBB1C1
(Ⅲ)连接A1O,则
∵四边形ABB1A1是菱形,∠A1AB=60°,
∴A1O⊥AB,
∵BC⊥平面ABB1A1
∴BC⊥A1O,
∵AB∩BC=B,
∴A1O⊥平面ABC,
VA1ABC=
1
3
×(
1
2
×3×4)×2
3
=4
3
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,其中等体积法,是转化思想在解答点到平面距离问题中最常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把曲线C1
y=2cosθ
y=2sinθ
(θ为参数)上各点的横坐标压缩为原来的
1
4
,纵坐标压缩为原来的
3
4
,得到的曲线C2为(  )
A、12x2+4y2=1
B、4x2+
4y2
3
=1
C、x2+
y2
3
=1
D、3x2+4y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么
(1)s是q的什么条件?
(2)r是q的什么条件?
(3)p是q的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函数f(x)=
a
b
+|
b
|2+
3
2

(1)求x∈[-
π
6
π
2
]时,求函数f(x)的值域.
(2)将y=f(x)的图象向右平移φ(φ>0)个单位后,再将得到的图象向下平移5个单位,得到函数y=g(x)的图象,若函数y=g(x)是偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,江边有一座高为30m的瞭望塔AB,江中有两条船C、D,由塔顶A测得两船C、D的俯角分别为45°和30°,而且两条船C、D与塔底部B连线所成的∠CBD大小为30°,求两条船C、D间的距离为多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工人在一天内加工零件产生的次品数用ξ表示,椐统计,随机变量ξ的概率分布如下:
ξ0123
p0.10.13aa
(1)求a的值和ξ的数学期望;
(2)假设两天内产生的次品数互不影响,求该工人两天内产生的次品数共2个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为y2=4x,过原点作斜率为1的直线和曲线C相交,另一个交点记为P1,过P1作斜率为2的直线与曲线C相交,另一个交点记为P2,过P2作斜率为4的直线与曲线C相交,另一个交点记为P3,…,如此下去,一般地,过点Pn作斜率为2n的直线与曲线C相交,另一个交点记为Pn+1,设点Pn(xn,yn)(n∈N*).
(1)指出y1,并求yn+1与yn的关系式(n∈N*);
(2)求{y2n-1}(n∈N*)的通项公式,并指出点列P1,P3,…,P2n+1,…向哪一点无限接近?说明理由;
(3)令an=y2n+1-y2n-1,数列{an}的前n项和为Sn,试比较
3
4
Sn+1与
1
3n+10
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+blnx+c(a,b,c是常数)在x=e处的切线方程为(e-1)x+ey-e=0,且f(1)=0.
(Ⅰ)求常数f(x)的值;
(Ⅱ)若函数(0,+∞)(f′(x)=a+
b
x
)在区间f(x)内不是单调函数,求实数x=e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[1,e]的最小值为1,求a的值.

查看答案和解析>>

同步练习册答案