精英家教网 > 高中数学 > 题目详情
3.求满足下列条件的曲线的标准方程
(1)两焦点坐标分别是$({0,2\sqrt{2}}),({0,-2\sqrt{2}}),并且椭圆经过点({-\sqrt{21},-3})$.
(2)经过点$({3,-4\sqrt{2}}),({\frac{9}{4},5})的双曲线的标准方程$.

分析 (1)由题意可设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$,结合已知条件得关于a,b,c的方程组,求解方程组得答案;
(2)由题意,设双曲线方程为mx2+ny2=1,代入点(3,-4$\sqrt{2}$)、($\frac{9}{4}$,5),建立方程组,求出m,n,即可求出双曲线的标准方程.

解答 解:(1)由题意可设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$,
则$\left\{\begin{array}{l}{c=2\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{9}{{a}^{2}}+\frac{21}{{b}^{2}}=1}\end{array}\right.$,解得a2=36,b2=28.
∴题意方程为$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{28}=1$;
(2)设双曲线方程为由题意,设双曲线方程为mx2+ny2=1,
代入点(3,-4$\sqrt{2}$)、($\frac{9}{4}$,5),可得9m+32n=1,$\frac{81}{16}$m+25n=1,
联立解得m=-$\frac{1}{9}$,n=$\frac{1}{16}$,
∴双曲线的标准方程为$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}=1$.

点评 本题考查椭圆与双曲线的标准方程,考查待定系数法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上异于A、B的点.
PA=AB,∠BAC=60°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PBC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知原命题:若sinx=1,则$x=\frac{π}{2}$,则它的否命题为(  )
A.若sinx=1,则$x≠\frac{π}{2}$B.存在sinx=1,使$x≠\frac{π}{2}$
C.若sinx≠1,则$x≠\frac{π}{2}$D.若$x≠\frac{π}{2}$,则sinx≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,若$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,则(  )
A.$\overrightarrow{c}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow{b}$B.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{c}$=-$\overrightarrow{a}$+2$\overrightarrow{b}$D.$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.实数a取什么值时,复数z=a2-1+(a+1)i.是
(I)实数;
(Ⅱ)虚数;
(Ⅲ)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB|}}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ≠0),则点P所在直线过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{1-sinx,x∈[0,π)}\\{{{log}_{2016}}\frac{x}{π},x∈[π,+∞)}\end{array}}\right.$若有三个不同的实数x1,x2,x3(x1<x2<x3),使得f(x1)=f(x2)=f(x3),则满足x1+x2>4π-x3的事件的概率为$\frac{2013}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x>0,则函数y=x+$\frac{1}{x}$+$\frac{4x}{{x}^{2}+1}$的最小值为(  )
A.16B.8C.4D.非上述情况

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某公司安排6位员工在“五一劳动节(5月1日至5月3日)”假期值班,每天安排2人,每人值班1天,若6位员工中甲不在1日值班,乙不在3日值班,则不同的安排方法种数为(  )
A.30B.36C.42D.48

查看答案和解析>>

同步练习册答案