分析 (1)由题意可设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$,结合已知条件得关于a,b,c的方程组,求解方程组得答案;
(2)由题意,设双曲线方程为mx2+ny2=1,代入点(3,-4$\sqrt{2}$)、($\frac{9}{4}$,5),建立方程组,求出m,n,即可求出双曲线的标准方程.
解答 解:(1)由题意可设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$,
则$\left\{\begin{array}{l}{c=2\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{9}{{a}^{2}}+\frac{21}{{b}^{2}}=1}\end{array}\right.$,解得a2=36,b2=28.
∴题意方程为$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{28}=1$;
(2)设双曲线方程为由题意,设双曲线方程为mx2+ny2=1,
代入点(3,-4$\sqrt{2}$)、($\frac{9}{4}$,5),可得9m+32n=1,$\frac{81}{16}$m+25n=1,
联立解得m=-$\frac{1}{9}$,n=$\frac{1}{16}$,
∴双曲线的标准方程为$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}=1$.
点评 本题考查椭圆与双曲线的标准方程,考查待定系数法的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若sinx=1,则$x≠\frac{π}{2}$ | B. | 存在sinx=1,使$x≠\frac{π}{2}$ | ||
| C. | 若sinx≠1,则$x≠\frac{π}{2}$ | D. | 若$x≠\frac{π}{2}$,则sinx≠1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{c}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow{b}$ | B. | $\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | C. | $\overrightarrow{c}$=-$\overrightarrow{a}$+2$\overrightarrow{b}$ | D. | $\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 8 | C. | 4 | D. | 非上述情况 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 36 | C. | 42 | D. | 48 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com