精英家教网 > 高中数学 > 题目详情
9.有四个数,其中前三个数成等比数列,其积为216,后三个数又成等差数列,其和为12,求这四个数.

分析 设这四个为a,b,c,d,由等差数列和等比数列的性质列出方程,由此能求出这四个数.

解答 解:∵有四个数,其中前三个数成等比数列,其积为216,后三个数又成等差数列,其和为12,
∴设这四个为a,b,c,d,
则$\left\{\begin{array}{l}{{b}^{2}=ac}\\{abc=216}\\{2c=b+d}\\{b+c+d=12}\end{array}\right.$,解得a=9,b=6,c=4,d=2.
∴这四个数依次为9,6,4,2.

点评 本题考查四个数的求法,是基础题,解题时要认真审题,注意等比数列和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,满足Sn=-n2+7n(n∈N*).则数列{an}的通项公式是an=-2n+8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知双曲线的渐近线为3x+4y=0且经过点(8,3$\sqrt{3}$),求双曲线的方程;
(2)若(1)中的双曲线被点A(8,3)平分的弦为MN,求MN所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$与y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1
C.y=x-1(x∈R)与y=x-1(x∈N)D.y=1+$\frac{1}{x}$与y=1+$\frac{1}{t}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x+c
(1)求f(x)在[0,1]的最大值和最小值;
(2)求证:对任意x1,x2∈[0,1],总有|f(x1)-f(x2)|≤$\frac{1}{4}$;
(3)若函数y=f(x)在区间[0,2]上有2个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图1所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是 图2中的①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0则$\frac{f(x)+f(-x)}{x}$<0的解集为(  )
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,+3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知y=4x3+3tx2-6t2x+t-1,x∈R,t∈R.
(1)当x为常数,且t在区间[${0,\frac{{\sqrt{3}}}{6}}$]变化时,求y的最小值φ(x);
(2)证明:对任意的t∈(0,+∞),总存在x∈(0,1),使得y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)是定义在R上的奇函数,对?x∈R都有f(x-1)=f(x+1)成立,当x∈(0,1)且x1≠x2时,有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,给出下列命题:
①f(1)=0;
②f(x)在[-2,2]上有3个零点;
③点(2014,0)是函数y=f(x)的一个对称中心;
④直线x=2014是函数y=f(x)图象的一条对称轴.
则正确的是①③.

查看答案和解析>>

同步练习册答案