精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
2
[x2-2(2a-1)x+8]
(a∈R).
(1)若使函数f(x)在[a,+∞)上为减函数,求a的取值范围;
(2)当a=
3
4
时,求y=f[sin(2x-
π
3
)],x∈[
π
12
π
2
]的值域.
考点:函数与方程的综合运用
专题:综合题,函数的性质及应用
分析:(1)利用函数f(x)在[a,+∞﹚上为减函数,建立不等式组,即可求a的取值范围;
(2)确定y=f[sin(2x-
π
3
)],结合三角函数、对数函数的性质,即可求函数的值域.
解答: 解:(1)∵函数f(x)在[a,+∞﹚上为减函数,
2a-1≤a
a2-2(2a-1)a+8>0

∴-
4
3
<a≤1;
(2)当a=
3
4
时,f(x)=log
1
2
(x2-x+8)

∴y=f[sin(2x-
π
3
)]=log
1
2
{sin(2x-
π
3
)-
1
2
]2+
31
4
}

∵x∈[
π
12
π
2
],∴-
π
6
≤2x-
π
3
3
,∴-
1
2
≤sin(2x-
π
3
)≤1,
∴函数的值域为[log
1
2
10,log
1
2
35
4
].
点评:本题考查函数的单调性,函数的值域,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2,点M在线段EC上且不与E,C重合.
(1)当点M是EC中点时,求证:BM∥平面ADEF;
(2)当EM=2MC时,求平面BDM与平面ABF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
cosπx,x≤0
f(x-1)+1,x>0
,则f(
4
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-2<x<2,求y=2
10
3
-x
4-x2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图所示,平面α、β、γ满足α∩β=a,β∩γ=b,α∩γ=c,a∩b=A.求证:a、b、c三线交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

用e,f,g三个不同的字母组成一个含有n+1(n∈N+)个字母的字符串,要求由字母e开始,相邻两个字母不能相同,例如n=1时,排出的字符串为ef,eg:n=2时,排出的字符串是efe,ege,efg,egf,…在这种含有n+1个字母的字符串中,记排在最后一个的字母仍然是e的字符串的个数为an
(1)求a1,a2,a3
(2)求数列{an}的通项公式;
(3)证明:
1
a2
+
1
a3
+…+
1
an-1
+
1
an
3
2
(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆C:x2+y2=10内随机撒一粒豆子,则豆子落在阴影部分的概率是(  )
A、1-
2
B、
2
5
C、
4
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学要从高三年级中选出一名同学参加省里举行的化学试验竞赛,经过分组选拨,最后甲和乙两位同学入围,学校决定进行五次试验比赛确定最终人选,已知甲五次试验的得分情况分别为5,8,9,9,9;乙五次试验的得分情况分别为6,7,8,9,10.你认为选出哪位同学参加竞赛比较合适些?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有下列这段伪代码,那么将执行多少次循环(  )
A、4次B、5次C、7次D、10次

查看答案和解析>>

同步练习册答案