【题目】已知直线y=b与函数f(x)=2x+3和g(x)=ax+lnx分别交于A,B两点,若AB的最小值为2,则a+b=_______.
【答案】2.
【解析】
设A(x1,b),B(x2,b),则2x1+3=ax2+lnx2=b,表示出x1,求出|AB|,利用导数,结合最小值也为极小值,可得极值点,求出最小值,解方程可得a=1,再求得b和a+b.
设A(x1,b),B(x2,b),可设x1<x2,
则2x1+3=ax2+lnx2=b,
∴x1
(ax2+lnx2﹣3),
∴|AB|=x2﹣x1=(1
a)x2
lnx2
,
令y=(1
a)x
lnx
,
则y′=1![]()
(x>0),
由|AB|的最小值为2,
可得2﹣a>0,
函数在(0,
)上单调递减,在(
,+∞)上单调递增,
∴x
时,函数y取得极小值,且为最小值2,
即有(1
a)
ln
2,即得
ln
0
解得a=1,
由x2=1,
则b=ax2+lnx2=1+ln1=1,
可得a+b=2.
故答案为:2.
科目:高中数学 来源: 题型:
【题目】设椭圆
,过点
的直线
,
分别交
于不同的两点
、
,直线
恒过点![]()
(1)证明:直线
,
的斜率之和为定值;
(2)直线
,
分别与
轴相交于
,
两点,在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且以
,![]()
为焦点,椭圆
的离心率为
.
(1)求实数
的值;
(2)过左焦点
的直线
与椭圆
相交于
、
两点,
为坐标原点,问椭圆
上是否存在点
,使线段
和线段
相互平分?若存在,求出点
的坐标,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构为了解人们某个产品的使用情况是否与性别有关,在网上进行了问卷调查,在调查结果中随机抽取了50份进行统计,得到如下
列联表:
男性 | 女性 | 合计 | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)请根据调查结果分①析:你有多大把握认为使用该产品与性别有关;
(2)在不使用该产品的人中,按性别用分层抽样抽取6人,再从这6人中随机抽取2人参加某项活动,求这2人中恰有一位女性的概率.
附:![]()
| 0.010 | 0.005 | 0.001 |
| 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国和印度是当今世界上两个发展最快且是最大的发展中国家,为了解两国经济的发展情况,收集了2008年至2017年两国GDP年度增长率,并绘制成如图折线图,则下列结论不正确的是( )
![]()
A.2010年,两国GDP年度增长率均为最大
B.2014年,两国GDP年度增长率几乎相等
C.这十年内,中国比印度的发展更为平稳一些
D.2015年起,印度GDP年度增长率均比中国大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推进“千村百镇计划”,
年
月某新能源公司开展“电动莆田 绿色出行”活动,首批投放
台
型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对
型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为
分).最后该公司共收回
份评分表,现从中随机抽取
份(其中男、女的评分表各
份)作为样本,经统计得到如下茎叶图:
![]()
(1)求
个样本数据的中位数
;
(2)已知
个样本数据的平均数
,记
与
的最大值为
.该公司规定样本中试用者的“认定类型”:评分不小于
的为“满意型”,评分小于
的为“需改进型”.
①请根据
个样本数据,完成下面
列联表:
![]()
根据
列联表判断能否有
的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为
,求
的分布列及数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,底面是边长为
的正三角形,点
在底面
上的射影
恰是
的中点,侧棱
和底面成
角.
![]()
(1)若
为侧棱
上一点,当
为何值时,
;
(2)求二面角
的余弦值大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com