精英家教网 > 高中数学 > 题目详情
已知直线l:y=kx-2与抛物线 C:x2=-2py(p>0)交于A、B两点,O为坐标原点 
OA
+
OB
=(-4,-12).
(1)求直线l和抛物线C的方程;
(2)抛物线上一动点P从A到B运动时,求点P到直线l的最大值,并求此时点P的坐标.
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(1)由
y=kx-2
x2=-2py
得,x2+2pkx-4p=0,可得根与系数的关系、再利用向量坐标运算即可得出;
(2)设与直线AB平行且与抛物线相切于点P(x0,y0),由x2=-2y可得y′=-x,利用-x0=2,可得P(-2,-2).再利用点到直线的距离公式即可得出点P到直线AB的最大距离.
解答: 解:(1)由
y=kx-2
x2=-2py
得,x2+2pkx-4p=0,
设A(x1,y1),B(x2,y2).
则x1+x2=-2pk,y1+y2=k(x1+x2)-4=-2pk2-4,
OA
+
OB
=(x1+x2,y1+y2)=(-2pk,-2pk2-4)=(-4,-12).
-2pk=-4
-2pk2-4=-12

解得
p=1
k=2

∴直线l的方程为y=2x-2,抛物线C的方程为x2=-2y.
(2)设与直线AB平行且与抛物线相切于点P(x0,y0),
由x2=-2y可得y′=-x,
∴-x0=2,
解得x0=-2,∴(-2)2=-2×y0.解得y0=-2,
∴P(-2,-2).
点P到直线AB的最大距离d=
|-2×(-2)+2-2|
5
=
4
5
5
点评:本题考查了直线与抛物线相交于相切的位置公式、导数的几何意义、一元二次方程的根与系数的关系、向量的坐标运算、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,设a1为首项,其前n项和为Sn,若对任意的正整数m、n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6>S3
(Ⅰ)设{an}为等差数列,且公差为d,求a1和d的取值范围;
(Ⅱ)设{an}为等比数列,且公比为q(q>0且q≠1),求a1和q 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1的右焦点为F,直线x+y-1=0和x+y+1=0与椭圆分别交于A、B和C、D四点,则|AF|+|BF|+|CF|+|DF|=(  )
A、4
3
B、2
3
C、8
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

关于曲线C:x4-y3=1,给出下列四个结论:
①曲线C是双曲线;            
②关于y轴对称;
③关于坐标原点中心对称;      
④与x轴所围成封闭图形面积小于2.
则其中正确结论的序号是
 
.(注:把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A(e,1),B(1,0)是曲线y=lnx图象上的两点,点A在y轴上的射影为C,O为坐标原点,则曲线梯形OBAC的面积为(  )
A、eB、1C、e-1D、e-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线y-1=k(x-2)与圆x2+y2=1在第四象限内的部分有公共点,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a+b+c=1,a,b,c∈(0,+∞),求证:alog3a+blog3b+clog3c≥-1;
(2)已知a1+a2+…+a 3n=1,ai>0(i=1,2,3,…,3n),求证:a1log3a1+a2log3a2+a3log3a3+…+a 3nlog3a 3n≥-n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-3|+|x-a|,g(x)=x3+1,若函数y=f(g(x))的图象为轴对称图形,则实数a的值可能是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=3,
a
b
的夹角为
π
3
,若
a
b
与λ
a
+
b
的夹角为锐角,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案