精英家教网 > 高中数学 > 题目详情
9.下列函数中,与y=x相同的函数是(  )
A.$y=\sqrt{x^2}$B.y=lg10xC.$y=\frac{x^2}{x}$D.$y={(\sqrt{x-1})^2}+1$

分析 根据两个函数的定义域相同,对应法则也相同,即可判断它们是同一函数.

解答 解:对于A,y=$\sqrt{{x}^{2}}$=|x|(x∈R),与函数y=x的对应法则不同,不是同一函数;
对于B,y=lg10x=x(x∈R),与函数y=x的定义域相同,对应法则也相同,是同一函数;
对于C,y=$\frac{{x}^{2}}{x}$=x(x≠0),与函数y=x的定义域不同,不是同一函数;
对于D,y=${(\sqrt{x-1})}^{2}$+1=x(x≥1),与函数y=x的定义域不同,不是同一函数.
故选:B.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若x,y∈R,则“x2>y2”是“x>y”的(  )
A.充分不必要条件B.必要不充分条件
C.充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2015-2016学年四川省高二上学期期中考数学试卷(解析版) 题型:选择题

直线的倾斜角为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y满足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若(1,1)是目标函数z=ax+y(a>0)取最大值时的唯一最优解,则实数a取值的集合是(  )
A.{1}B.(0,1)C.(0,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.我市2016年11月1日~11月30日对空气污染指数的监测数据如下(主要污染物可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
样本频率分布表:
分组频数频率
[41,51)2$\frac{2}{30}$
[51,61)1$\frac{1}{30}$
[61,71)4$\frac{4}{30}$
[71,81)6$\frac{6}{30}$
[81,91)10$\frac{10}{30}$
[91,101)
[101,111)2$\frac{2}{30}$
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点F是抛物线C:x2=2py(p>0)的焦点,点P(x0,y0)是抛物线C上的动点,抛物线C在点P处的切线为直线l.
(1)若直线l与x轴交于点Q,求证:FQ⊥l;
(2)作平行于l的直线L交抛物线C于M,N两点,记点F到l、L的距离分别为d、D,若D=2d,求线段MN中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动圆M恒过F(1,0)且与直线x=-1相切,动圆圆心M的轨迹记为C;直线x=-1与x轴的交点为N,过点N且斜率为k的直线l与轨迹C有两个不同的公共点A,B,O为坐标原点.
(1)求动圆圆心M的轨迹C的方程,并求直线l的斜率k的取值范围;
(2)点D是轨迹C上异于A,B的任意一点,直线DA,DB分别与过F(1,0)且垂直于x轴的直线交于P,Q,证明:$\overrightarrow{OP}•\overrightarrow{OQ}$为定值,并求出该定值;
(3)对于(2)给出一般结论:若点$F({\frac{p}{2},0})$,直线$x=-\frac{p}{2}$,其它条件不变,求$\overrightarrow{OP}•\overrightarrow{OQ}$的值(可以直接写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线C:y2=ax(a>0)的焦点为F,过焦点F和点P(0,1)的射线FP与抛物线相交于点M,与其准线相交于点N,若|FM|:|MN|=1:3,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∈(0,$\frac{π}{2}$),若cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则sin(α-$\frac{π}{12}$)=$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

同步练习册答案