分析 由已知利用诱导公式可求sin(α-$\frac{π}{3}$),利用同角三角函数基本关系式可求cos(α-$\frac{π}{3}$)的值,进而利用两角和的正弦函数公式即可计算得解sin(α-$\frac{π}{12}$)的值.
解答 解:∵α∈(0,$\frac{π}{2}$),
∴-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{π}{6}$,
∵cos(α+$\frac{π}{6}$)=sin($\frac{π}{3}$-α)=$\frac{3}{5}$,
∴sin(α-$\frac{π}{3}$)=-$\frac{3}{5}$,
∴cos(α-$\frac{π}{3}$)=$\sqrt{1-si{n}^{2}(α-\frac{π}{3})}$=$\frac{4}{5}$,
∴sin(α-$\frac{π}{12}$)=sin[(α-$\frac{π}{3}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$[sin(α-$\frac{π}{3}$)+cos(α-$\frac{π}{3}$)]=$\frac{\sqrt{2}}{2}$×(-$\frac{3}{5}$+$\frac{4}{5}$)=$\frac{\sqrt{2}}{10}$.
故答案为:$\frac{\sqrt{2}}{10}$.
点评 本题主要考查了诱导公式,同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{x^2}$ | B. | y=lg10x | C. | $y=\frac{x^2}{x}$ | D. | $y={(\sqrt{x-1})^2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com