分析 (Ⅰ)利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出C2的直角坐标方程.
(2)将$\left\{\begin{array}{l}x=2\sqrt{2}-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{2}+\frac{{\sqrt{2}}}{2}t\end{array}$转化为$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t为参数).把$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$代入${x}^{2}+(y-2\sqrt{2})^{2}=8$,得t2-2t-6=0,由此能求出|PA|+|PB|.
解答 解:(Ⅰ)∵曲线C2:ρ=4$\sqrt{2}$sinθ,∴${ρ}^{2}=4\sqrt{2}ρsinθ$,
∴C2的直角坐标方程为:${x}^{2}+{y}^{2}=4\sqrt{2}y$,即${x}^{2}+(y-2\sqrt{2})^{2}=8$.
(2)将$\left\{\begin{array}{l}x=2\sqrt{2}-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{2}+\frac{{\sqrt{2}}}{2}t\end{array}$转化为$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t为参数).
把$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$代入${x}^{2}+(y-2\sqrt{2})^{2}=8$,
得t2-2t-6=0,
则t1+t2=2,t1t2=-6,
∴|PA|+|PB|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{4+24}=2\sqrt{7}$.
点评 本题考查圆的直角坐标方程的求法,考查两线段和的求法,考查极坐标方程、参数方程、直角坐标方程等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\sqrt{3}$-1] | B. | (-∞,0] | C. | [0,$\sqrt{3}$-1] | D. | (-∞,1-$\sqrt{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com