精英家教网 > 高中数学 > 题目详情
14.已知点F是抛物线C:x2=2py(p>0)的焦点,点P(x0,y0)是抛物线C上的动点,抛物线C在点P处的切线为直线l.
(1)若直线l与x轴交于点Q,求证:FQ⊥l;
(2)作平行于l的直线L交抛物线C于M,N两点,记点F到l、L的距离分别为d、D,若D=2d,求线段MN中点的轨迹方程.

分析 (1)由题意求出抛物线的焦点坐标及准线方程,利用导数求出过抛物线上一点P(x0,$\frac{{x}_{0}^{2}}{2p}$)的切线的斜率k,写出切线方程,得到Q的坐标,进一步求出FQ的斜率,由kFQ×k=-1可得FQ⊥l;
(2)由(1)可设直线L的方程为y=$\frac{{x}_{0}}{p}x+b$,求得d,得到D=$\sqrt{{p}^{2}+{{x}_{0}}^{2}}$.再由点到直线的距离公式得D=$\frac{|-\frac{{p}^{2}}{2}+b|}{\sqrt{{{x}_{0}}^{2}+{p}^{2}}}$=$\sqrt{{p}^{2}+{{x}_{0}}^{2}}$,求出b,得到直线方程,与抛物线方程联立,设M(x1,y1),N(x2,y2),MN的中点为(x′,y′),利用根与系数的关系即可求得线段MN中点的轨迹方程.

解答 (1)证明:由题意可知:抛物线C:x2=2py的焦点F(0,$\frac{p}{2}$),准线为:y=-$\frac{p}{2}$,
过抛物线上一点P(x0,$\frac{{x}_{0}^{2}}{2p}$),作抛物线的切线,
则切线的斜率k=$y′{丨}_{x={x}_{0}}$=$\frac{{x}_{0}}{p}$,
切线方程为:y-$\frac{{x}_{0}^{2}}{2p}$=$\frac{{x}_{0}}{p}$(x-x0),交x轴于Q($\frac{{x}_{0}}{2}$,0),
则直线FQ的斜率kFQ=$\frac{\frac{p}{2}-0}{0-\frac{{x}_{0}}{2}}$=-$\frac{p}{{x}_{0}}$,
∵kFQ×k=-1,∴FQ⊥l;
(2)解:由(1)可设直线L的方程为y=$\frac{{x}_{0}}{p}x+b$,
∵d=$\sqrt{(\frac{p}{2})^{2}+(\frac{{x}_{0}}{2})^{2}}=\frac{1}{2}\sqrt{{p}^{2}+{{x}_{0}}^{2}}$,∴D=$\sqrt{{p}^{2}+{{x}_{0}}^{2}}$.
由点到直线的距离公式得D=$\frac{|-\frac{{p}^{2}}{2}+b|}{\sqrt{{{x}_{0}}^{2}+{p}^{2}}}$=$\sqrt{{p}^{2}+{{x}_{0}}^{2}}$,
整理得:$|-\frac{{p}^{2}}{2}+b|={p}^{2}+{{x}_{0}}^{2}$,
∴$-\frac{{p}^{2}}{2}+b=±({p}^{2}+{{x}_{0}}^{2})$,则b=$\frac{3{p}^{2}}{2}+{{x}_{0}}^{2}$或b=$-\frac{{p}^{2}}{2}-{{x}_{0}}^{2}$(舍).
∴直线L的方程为$y=\frac{{x}_{0}}{p}x+\frac{3{p}^{2}}{2}+{{x}_{0}}^{2}$.
联立$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=\frac{{x}_{0}}{p}x+\frac{3{p}^{2}}{2}+{{x}_{0}}^{2}}\end{array}\right.$,得${x}^{2}+2{x}_{0}x+3{p}^{3}+2p{{x}_{0}}^{2}=0$.
设M(x1,y1),N(x2,y2),MN的中点为(x′,y′),
则$x′=\frac{{x}_{1}+{x}_{2}}{2}=-{x}_{0}$,$y′=-\frac{{{x}_{0}}^{2}}{p}+\frac{3}{2}{p}^{2}+{{x}_{0}}^{2}$,
消去x0,得$y′=\frac{p-1}{p}(x′)^{2}+\frac{3}{2}{p}^{2}$.
∴线段MN中点的轨迹方程为$y=\frac{p-1}{p}{x}^{2}+\frac{3}{2}{p}^{2}$.

点评 本题考查轨迹方程的求法,考查了直线与抛物线位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:填空题

某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据,则其线性回归直线方程是______________

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.直线过点A(0,-3),B(2,1),在抛物线y2=-2x上求一点P,使它到直线AB的距离最短,并求出此最短距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=m-|2-x|,且f(x+2)>0的解集为(-1,1).
(1)求m的值;
(2)若正实数a,b,c,满足a+2b+3c=m.求$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,与y=x相同的函数是(  )
A.$y=\sqrt{x^2}$B.y=lg10xC.$y=\frac{x^2}{x}$D.$y={(\sqrt{x-1})^2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}(n∈N*)中,其前n项和为Sn,满足$2{S_n}={n^2}-n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\left\{\begin{array}{l}\frac{1}{{\sqrt{{a_{n+1}}}+\sqrt{{a_{n+3}}}}},n=2k-1\\ \frac{n+1}{{a_{n+1}^2•a_{n+3}^2}},n=2k\end{array}\right.$(k为正整数),求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AD=2,AB=4,E,F分别为AB,AD的中点,现△ADE将沿DE折起,得四棱锥A-BCDE.

(1)求证:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面体FACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中,乙没有被选中的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案