精英家教网 > 高中数学 > 题目详情
20.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知b=4,c=6,C=2B.
(1)求cosB的值;
(2)求△ABC的面积.

分析 (1)根据题意、正弦定理、二倍角的正弦公式求出cosB的值;
(2)由(1)和平方关系求出sinB的值,由二倍角的正弦公式求出sin2B和sinC的值,由二倍角的余弦公式求出cosC的值,由诱导公式、两角和的正弦公式求出sinA的值,代入三角形的面积公式求解即可.

解答 解:(1)因为b=4,c=6,C=2B,且$\frac{b}{sinB}=\frac{c}{sinC}$,
所以$\frac{4}{sinB}=\frac{6}{sin2B}$,即$\frac{4}{sinB}=\frac{6}{2sinBcosB}$,
又sinB≠0,∴$cosB=\frac{3}{4}$;
(2)由(1)知$cosB=\frac{3}{4}$,从而$sinB=\frac{{\sqrt{7}}}{4}$,
因此$sinC=sin2B=2sinBcosB=\frac{{3\sqrt{7}}}{8}$,
$cosC=cos2B=2{cos^2}B-1=\frac{1}{8}$,
所以sinA=sin(π-B-C)=sin(B+C)
=$sinBcosC+cosBsinC=\frac{\sqrt{7}}{4}×\frac{1}{8}+\frac{3}{4}×\frac{3\sqrt{7}}{8}=\frac{5\sqrt{7}}{16}$,
所以△ABC的面积S=$\frac{1}{2}×4×6×\frac{{5\sqrt{7}}}{16}=\frac{{15\sqrt{7}}}{4}$.

点评 本题考查正弦定理、余弦定理,二倍角的公式、诱导公式、两角和的正弦公式、平方关系等应用,以及三角形的面积公式,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 对任意x1,x2∈R(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,1]B.(1,5)C.[1,5)D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=($\frac{1}{2}$)xB.y=$\frac{1}{x-1}$C.y=x+sinxD.y=-x3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知loga2=m,loga3=n.
(1)求a2m-n的值;
(2)用m,n表示 loga18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=4,an+1-an=2n+3(n∈N*).
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{n+1}{{{n^2}{a_{n+1}}}}(n∈N*)$,Tn是数列{bn}的前n项的和,求证:${T_n}<\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)计算${({lg2})^2}+lg5•lg20+{({\sqrt{2016}})^0}+{0.027^{\frac{2}{3}}}×{({\frac{1}{3}})^{-2}}$;
(2)已知$\frac{3tanα}{tanα-2}=-1$,求$\frac{7}{{{{sin}^2}α+sinα•cosα+{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式(a2-4)x2+4x-1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求经过两直线l1:2x-3y-3=0和l2:x+y+2=0的交点且与直线l:3x+y-1=0垂直的直线方程;
(2)若两平行直线l1:2x+y-4=0和l2:y=-2x-k-2的距离不大于$\sqrt{5}$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面伪代码表示的算法中,最后一次输出的I的值是(  )
For I=2to 13Step 3
Print I
Next I
Print“I=”,I.
A.5B.8C.11D.14

查看答案和解析>>

同步练习册答案