| A. | (-∞,1] | B. | (1,5) | C. | [1,5) | D. | [1,4] |
分析 若对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则函数f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 为减函数,进而根据分段函数单调性的定义,可得答案.
解答 解:若对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
则函数f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 为减函数,
则$\left\{\begin{array}{l}{4-4(a+1)+3a≥2(a-5)-2}\\{a+1≥2}\\{a-5<0}\end{array}\right.$,
解得:a∈[1,4],
故选:D.
点评 本题考查的知识点是分段函数的应用,熟练掌握并正确理解分段函数单调性的定义,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<aa<ab | B. | aa<ab<1 | C. | ab<aa<1 | D. | 1ab<aa |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2≤a≤3 | B. | a>2 | C. | a≥2 | D. | 2≤a<3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com