精英家教网 > 高中数学 > 题目详情
18.设$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a<1,那么(  )
A.1<aa<abB.aa<ab<1C.ab<aa<1D.1ab<aa

分析 根据指数函数的单调性求出a,b的范围,从而求出答案.

解答 解:∵f(x)=${(\frac{1}{2})}^{x}$是减函数,
∴1>b>a>0,
∴ab<aa<1,
故选:C.

点评 本题考查了指数函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1中,M,N分别为棱AB,DD1的中点,异面直线A1M和C1N所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sinx-a(0≤x≤$\frac{5π}{2}$)的三个零点成等比数列,则log2a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an},它的前n项和为Sn,若an=$\frac{1}{(2n+1)(2n-1)}$,则Sn=(  )
A.$\frac{2}{2n+1}$B.$\frac{2n}{2n+1}$C.$\frac{n}{2n+1}$D.$\frac{1}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在正方形 ABCD中,F是 AD 的中点,BF与 AC交于点 G,则△BGC 与四边形 CGFD的面积之比是4:5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3
(1)求数列{an}和{bn}的通项公式;
(2)设Un=b1+b4+b7+…+b3n-2,其中n=1,2,…,求U10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 对任意x1,x2∈R(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,1]B.(1,5)C.[1,5)D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法中,正确的是(  )
A.数列{$\frac{n+1}{n}$} 的第k项为1+$\frac{1}{k}$
B.数列0,2,4,6,8…可记为{2n}
C.数列1,0,-1与数列-1,0,1是相同的数列
D.数列1,3,5,7可表示为{1,3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知loga2=m,loga3=n.
(1)求a2m-n的值;
(2)用m,n表示 loga18.

查看答案和解析>>

同步练习册答案