精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足:a1=4,an+1-an=2n+3(n∈N*).
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{n+1}{{{n^2}{a_{n+1}}}}(n∈N*)$,Tn是数列{bn}的前n项的和,求证:${T_n}<\frac{5}{16}$.

分析 (1)由a1=4,an+1-an=2n+3(n∈N*).利用“累加求和”方法、等差数列的求和公式即可得出.
(2)由bn=$\frac{n+1}{{n}^{2}{a}_{n+1}}$=$\frac{n+1}{{n}^{2}(n+2)^{2}}$=$\frac{1}{4}[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,利用“裂项求和”方法即可得出.

解答 解:(1)∵a1=4,an+1-an=2n+3(n∈N*).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n+1)+(2n-1)+…+5+4
=$\frac{(n+1)(1+2n+1)}{2}$=(n+1)2
(2)证明:bn=$\frac{n+1}{{n}^{2}{a}_{n+1}}$=$\frac{n+1}{{n}^{2}(n+2)^{2}}$=$\frac{1}{4}[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,

∴Tn=$\frac{1}{4}[(1-\frac{1}{{3}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{4}^{2}})$+$(\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}})$+…+$(\frac{1}{(n-1)^{2}}-\frac{1}{(n+1)^{2}})$+$(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})]$
=$\frac{1}{4}$$(1+\frac{1}{4}-\frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}})$
<$\frac{1}{4}×\frac{5}{4}$=$\frac{5}{16}$.

点评 本题考查了“裂项求和”方法、“累加求和”方法、等差数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.以下命题中,正确命题的序号是①③.
①△ABC中,A>B的充要条件是sinA>sinB;
②函数y=f(x)在区间(1,2)上存在零点的充要条件是f(1)•f(2)<0;
③已知幂函数f(x)=xα的图象经过点(2,$\frac{\sqrt{2}}{2}$),则f(4)的值等于$\frac{1}{2}$;
④把函数y=sin(2-2x)的图象向右平移2个单位后,得到的图象对应的解析式为y=sin(4-2x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若z=$\frac{1}{1-i}$-i,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$+$\frac{1}{2}i$D.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}m{x^2}$+x在R上有极值,则m的取值范围是{m|m>2或m<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.椭圆4x2+y2=1的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知b=4,c=6,C=2B.
(1)求cosB的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=\sqrt{4-x}+x$的最大值为$\frac{17}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(理)“十一黄金周”期间三亚景区迎来了游客高峰期.游客小李从“大小洞天”到景区“天涯海角”景区有L1,L2两条路线(如图),路线L1上有A1,A2,A3三个风景点,各风景点遇到堵塞的概率均为$\frac{2}{3}$;L2路线上有B1,B2两个风景点,各风景点遇到堵塞的概率依次为$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L1路线,求最多遇到1次堵塞的概率;
(2)按照“平均遇到堵塞次数最少”的要求,请你帮助小李从上述两条路线中选择一条最好的旅游路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某班5名同学去参加3项不同活动,同一项活动至少1人参加,则5人参加活动的方案共有(  )种.
A.120B.130C.140D.150

查看答案和解析>>

同步练习册答案