精英家教网 > 高中数学 > 题目详情
已知点A (1,0),P是曲线
x=2cosθ
y=1+cos2θ
(θ∈R)
上任一点,设P到直线l:y=-
1
2
的距离为d,则|PA|+d的最小值是
 
分析:将参数方程化为普通方程,可知方程表示的是抛物线,继而结合抛物线的定义解决.
解答:解:将
x=2cosθ
y=1+cos2θ
(θ∈R)
化为普通方程为x2=2y,焦点F(0,
,1
2
),准线y=-
1
2

由抛物线的定义,|PA|+d=|PA|+|PF|≥|AF|=
5
2

故答案为
5
2
点评:抛物线的定义反映了抛物线的几何本质,同时此题考查数学中的转化的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案