精英家教网 > 高中数学 > 题目详情

△ABC中,角A,B,C的对边分别是a,b,c且满足(2a-c)cosB=bcosC.
(1)求角B的大小;
(2)若△ABC的面积为为数学公式,求a+c的值.

解:(1)又A+B+C=π,即C+B=π-A,
∴sin(C+B)=sin(π-A)=sinA,
将(2a-c)cosB=bcosC,利用正弦定理化简得:(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,
在△ABC中,0<A<π,sinA>0,
∴cosB=,又0<B<π,
则B=
(2)∵△ABC的面积为,sinB=sin=
∴S=acsinB=ac=
∴ac=6,又b=,cosB=cos=
∴利用余弦定理b2=a2+c2-2accosB得:a2+c2-ac=(a+c)2-3ac=(a+c)2-18=3,
∴(a+c)2=21,
则a+c=
分析:(1)利用正弦定理化简已知的等式,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinA不为0,得到cosB的值,利用特殊角的三角函数值即可求出B的度数;
(2)由B的度数求出sinB和cosB的值,利用三角形的面积公式表示出三角形ABC的面积,将sinB及已知的面积代入求出ac的值,利用余弦定理得到b2=a2+c2-2accosB,再利用完全平方公式整理后,将b,ac及cosB的值代入,开方即可求出a+c的值.
点评:此题考查了正弦、余弦定理,诱导公式,两角和与差的正弦函数公式,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案