精英家教网 > 高中数学 > 题目详情
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下:
组号 分组 频数 频率
第一组 [160,165) 5 0.050
第二组 [165,170) a 0.350
第三组 [170,175) 30 b
第四组 [175,180) c 0.200
第五组 [180,185] 10 0.100
合计 100 1.00
(1)为了能选拔出优秀的学生,高校决定在笔试成绩高的第三、四、五组中用分层抽样法抽取6名学生进入第二轮面试,试确定a,b,c的值并求第三、四、五组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组中至少有一名学生被A考官面试的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:本题的关键是找到频率分布直方图每一组的频数,在根据古典概型的计算公式求得概率.
解答: 解:(1)由频率分布表知a=100×0.35=35,b=
30
100
=0.3
,c=100×0.2=20
因为第三、四、五组共有60名学生,所以利用分层抽样法在60名学生中抽取6名学生,每组分别为:第三组
30
60
×6=3
人,第四组
20
60
×6=2
人,第五组
10
60
×6=1
人.
所以第三、四、五组分别抽取3人、2人、1人进入第二轮面试.
(2)设第三组的3名学生为A1、A2、A3,第四组的2名学生为B1、B2,
第五组的1名学生为C1.则从6名学生中抽取2名学生有15种可能:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2、C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),
第四组的2名学生至少有一名学生被A考官面试共有9种可能
其中第四组的2名学生至少有一名学生被A考官面试的概率为
9
15
=
3
5
点评:本题考察频率分布直方图、分层抽样、古典概型的基本知识,是一道常见的高考题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|x-3|-|x+1|,x∈R.
(Ⅰ)解不等式f(x)<-1;
(Ⅱ)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是(  )
A、若α∥β,m?α,则 m∥β
B、若m∥α,m∥β,α∩β=n,则 m∥n
C、若m?α,n?α,m∥β,n∥β,则α∥β
D、若m∥α,m⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y≤1
x-y≤1
x≥a
,若x+2y≥-5恒成立,则实数a的取值范围为(  )
A、(-∞,-1]
B、[-1,+∞)
C、[-1,1]
D、[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=4,前n项和Sn满足:Sn=an+1+n.
(Ⅰ)求an
(Ⅱ)令bn=
2n-1+1
nan
,数列{bn2}的前n项和为Tn.求证:?n∈N*,Tn
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
3
2
(an-1).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠BAC=90°,AC=2AB,PA垂直△ABC所在的平面,PC与△ABC所在的平面成30°角,点D在线段PC上,点E在线段BC上.
(Ⅰ)若AD⊥PC,求证:BD⊥PC;
(Ⅱ)若PD:PC=1:4,EC:BC=1:4,求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正四棱锥S-ABCD中,AB=2,E是边BC的中点,动点P在四棱锥的表面上运动,且总保持
PE
AC
=0
,点P的轨迹所围成的图形的面积为
2
,若以
BC
的方向为主视方向,则四棱锥S-ABCD的主视图的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、若命题p:?x∈R,x2-x+1=0,则¬p:?x∈R,x2-x+1≠0
B、若命题p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,则“p∧¬q”为假命题.
C、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
D、“sinθ=
1
2
”是“θ=30°”的充分不必要条件

查看答案和解析>>

同步练习册答案