精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=lnx+(x-a)2(a∈R)在区间[$\frac{1}{2}$,2]上存在单调递增区间,则实数a的取值范围是(-∞,$\frac{9}{4}$).

分析 利用导函数得到不等式恒成立,然后求解a的范围.

解答 解:∵函数f(x)在区间[$\frac{1}{2}$,2]上存在单调增区间,
∴函数f(x)在区间[$\frac{1}{2}$,2]上存在子区间使得不等式f′(x)>0成立.
f′(x)=$\frac{1}{x}$+2(x-a)]=$\frac{{2x}^{2}-2ax+1}{x}$,
设h(x)=2x2-2ax+1,则h(2)>0或h($\frac{1}{2}$)>0,
即8-4a+1>0或$\frac{1}{2}$-a+1>0,
得a<$\frac{9}{4}$
故答案为:(-∞,$\frac{9}{4}$).

点评 本题考查函数的导数的综合应用,函数恒成立,考查转化思想,不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.抛掷一枚质地均匀的硬币,出现正面向上和反面向上的概率都为$\frac{1}{2}$,构造数列{an},使an=$\left\{\begin{array}{l}{1,第n次正面向上}\\{-1,第n次把反面向上}\end{array}\right.$,记Sn=a1+a2+…+an,则S2≠0且S8=2的概率为(  )
A.$\frac{43}{128}$B.$\frac{43}{64}$C.$\frac{13}{128}$D.$\frac{13}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过原点的直线l与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两支分别相交于A,B两点,F(-$\sqrt{3}$,0)是此双曲线的左焦点,若|FA|+|FB|=4,$\overrightarrow{FA}$•$\overrightarrow{FB}$=0则此双曲线的方程是(  )
A.$\frac{x^2}{2}$-y2=1B.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{8}$-$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*),将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列{cn},则c2016+c2017=6064.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\frac{(1-i)^{2}}{z}$=1+i(i为虚数单位),则复数z在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=tan$\frac{1}{2}$x的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角α终边上一点P(-4,3).
(Ⅰ)求$\frac{{cos(α-\frac{π}{2})sin(2π-α)cos(π-α)}}{{sin(\frac{π}{2}+α)}}$的值;
(Ⅱ)若β为第三象限角,且tanβ=1,求cos(2α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx+ax2,其中a为实常数.
(1)讨论函数f(x)的极值点个数;
(2)若函数f(x)有两个零点,求a的取值范围;
(3)已知a>0,对任意定义域内的两个不等实数x1,x2都有|f(x1)-f(x2)|>|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为直线(  )
A.x=-3B.x=0C.x=3D.x=6

查看答案和解析>>

同步练习册答案