精英家教网 > 高中数学 > 题目详情
7.已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*),将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列{cn},则c2016+c2017=6064.

分析 对{an}中的n从从奇数与偶数进行分类讨论,对{bn}中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项,即可求出答案.

解答 解:b3k-2=2(3k-2)+7=a2k-1
b3k-1=6k+5 
a2k=6k+6
b3k=6k+7
∵6k+3<6k+5<6k+6<6k+7.
∴${c_n}=\left\{\begin{array}{l}6k+3(n=4k-3)\\ 6k+5(n=4k-2)\\ 6k+6(n=4k-1)\\ 6k+7(n=4k)\end{array}\right.$,k∈N*
∴c2016+c2017=3031+3033=6064,
故答案为:6064.

点评 本题考查利用数列的通项公式求数列的项、考查判断某项是否属于一个数列是看它是否能写出通项形式、考查分类讨论的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列函数中,可以是单调递增函数的为(  )
A.f(x)=(x-a)|x|,a≠0B.f(x)=x2+ax+1,a∈RC.f(x)=log2(ax-1),a∈RD.f(x)=ax2+cosx,a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2ax(a∈R)的图象C过点P(1,e),奇函数g(x)=kx+b(k,b∈R,k≠0)的图象为l.
(1)求实数a,b的值;
(2)若在y轴右侧图象C恒在l的上方,求实数k的取值范围;
(3)若图象C与l有两个不同的交点A,B,其横坐标分别是x1,x2,设x1<x2,求证:x1•x2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若等边三角形ABC的边长为2,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$,则$\overrightarrow{MA}$•$\overrightarrow{AB}$等于(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定点F1(-1,0),F2(1,0),动点P满足条件:|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=2$\sqrt{2}$,点P的轨迹是曲线E,直线l:y=x+b与曲线E交于A、B两点,且|AB|=$\frac{4\sqrt{2}}{3}$.
(Ⅰ)求曲线E的方程;
(II)求直线l的方程;
(Ⅲ) 设过点F1的直线与曲线E交于M、N两点,并且线段MN的中点在直线2x+y=0上,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)(x∈R)满足f(-x)=-f(x)=f(4-x),当x∈(0,2)时,f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是$\frac{1}{4}<b≤1$或$b=\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=lnx+(x-a)2(a∈R)在区间[$\frac{1}{2}$,2]上存在单调递增区间,则实数a的取值范围是(-∞,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{x^2}{4}$+y2=1上一动点P,F为其右焦点,椭圆内一定点A(0,$\frac{1}{2}$),则|AP|+$\frac{{2\sqrt{3}}}{3}$|AF|的最小值(  )
A.$\frac{2}{3}$B.1C.$\frac{{4\sqrt{3}}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知m,n为实数,若关于x的不等式x2+mx+n<0的解集为(-1,3),则m+n的值为-5.

查看答案和解析>>

同步练习册答案