精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)(x∈R)满足f(-x)=-f(x)=f(4-x),当x∈(0,2)时,f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是$\frac{1}{4}<b≤1$或$b=\frac{5}{4}$.

分析 判断函数是奇函数和函数的周期性,可得0、±2是函数f(x)的零点,将函数f(x)在区间[-2,2]上的零点个数为5,转化为当x∈(0,2)时,x2-x+b>0恒成立,且x2-x+b=1在(0,2)有一解,由此构造关于b的不等式组,解不等式组可得实数b的取值范围.

解答 解:由题意知,f(x)是定义在R上的奇函数,
所以f(0)=0,即0是函数f(x)的零点,
因为f(x)是定义在R上且以4为周期的周期函数,
所以f(-2)=f(2),且f(-2)=-f(2),则f(-2)=f(2)=0,
即±2也是函数f(x)的零点,
因为函数f(x)在区间[-2,2]上的零点个数为5,
且当x∈(0,2)时,f(x)=ln(x2-x+b),
所以当x∈(0,2)时,x2-x+b>0恒成立,且x2-x+b=1在(0,2)有一解,
即$\left\{\begin{array}{l}{△=1-4b<0}\\{(\frac{1}{2})^{2}-\frac{1}{2}+b=1}\end{array}\right.$或$\left\{\begin{array}{l}{△=1-4b<0}\\{{0}^{2}-0+b-1≤0}\\{{2}^{2}-2+b-1>0}\end{array}\right.$,
解得$\frac{1}{4}$<b≤1或b=$\frac{5}{4}$,
故答案为:$\frac{1}{4}<b≤1$或$b=\frac{5}{4}$.

点评 本题考查奇函数的性质,函数的周期性,对数函数的性质,函数的零点的综合应用,二次函数根的分布问题,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.为了解游客对2015年“十一”小长假的旅游情况是否满意,某旅行社从年龄(单位:岁)[22,52]在内的游客中随机抽取了1000人,并且作出了各个年龄段的频率分布直方图如图所示,同时对这1000人的旅游结果满意情况进行统计得到如表:
分组满意的人数占本组的频率
[22,27)300.6
[27.32)n0.95
[32,37)1200.8
[37,42)432m
[42,47)1440.96
[47,52)960.96
(1)求统计表中m和n的值;
(2)从年龄在[42,52]内且对旅游结果满意的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人做进一步调查,记4人中年龄在[47,52]内的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是边长为1的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请问蜘蛛从A到B正方体表面爬行的最短路程为(  )
A.3B.$\sqrt{2}$+1C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线ax+4y-2=0与直线2x-5y+b=0互相垂直且交于点(1,c),求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*),将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列{cn},则c2016+c2017=6064.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinx,f(x)的导函数是(  )
A.cosxB.-cosxC.sinxD.-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=tan$\frac{1}{2}$x的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列各题:
(1)求下列椭圆5x2+9y2=100的焦点和顶点的坐标;
(2)求抛物线 y2-6x=0的焦点坐标,准线方程和对称轴;
(3)求焦点在x轴上,两顶点间的距离是8,e=$\frac{5}{4}$的 双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{1}{3}$x3+(1-a)x2-4ax+a,其中a为常数.
(1)当a=2时,求函数f(x)的单调减区间;
(2)若函数f(x)在区间[0,3]上的最大值为3,求实数a的取值集合;
(3)试讨论函数y=f′(x)的图象与函数y=$\frac{1}{x}$-(a+1)2的图象的公切线条数.

查看答案和解析>>

同步练习册答案