精英家教网 > 高中数学 > 题目详情
3.如图是边长为1的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请问蜘蛛从A到B正方体表面爬行的最短路程为(  )
A.3B.$\sqrt{2}$+1C.$\sqrt{5}$D.$\sqrt{3}$

分析 将正方体展开,得到一个矩形,画出矩形对角线即为正确答案.

解答 解:∵AC=2,
∴BC=1,
∴AB=$\sqrt{4+1}$=$\sqrt{5}$.
根据两点之间线段最短可知,AB为线段,F为ED中点.
最短路线为:

故选:C.

点评 此题考查了立方体的侧面展开----最短路径问题,根据“两点之间线段最短进行判断”是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.有一圆心角为60°半径为1的扇形铁板.工人师傅要裁出一个面积最大的矩形,下列两种裁法哪一种更好,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.2011年12月,吴某的工资纳税额是245元,若不考虑其它因素,则吴某该月工资收入为(  )
级数全月应纳税所得额税率(%)
1不超过1500元3
21500元-4500元10
注:本表所称全月应纳税所得额是以每月收入额减去3500元(起征点)后的余额.
A.7000元B.7500元C.6600元D.5950元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设A,B为抛物线x2=4y上的两动点,且线段AB的长为6,M为线段AB的中点,则点M到x轴的最短距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2ax(a∈R)的图象C过点P(1,e),奇函数g(x)=kx+b(k,b∈R,k≠0)的图象为l.
(1)求实数a,b的值;
(2)若在y轴右侧图象C恒在l的上方,求实数k的取值范围;
(3)若图象C与l有两个不同的交点A,B,其横坐标分别是x1,x2,设x1<x2,求证:x1•x2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点
(1)求证:PA∥平面EDB;
(2)求证:DE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若等边三角形ABC的边长为2,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$,则$\overrightarrow{MA}$•$\overrightarrow{AB}$等于(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)(x∈R)满足f(-x)=-f(x)=f(4-x),当x∈(0,2)时,f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是$\frac{1}{4}<b≤1$或$b=\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的个数是(  )
①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow 0$;   
②$\overrightarrow{OB}$-$\overrightarrow{OA}$=$\overrightarrow{AP}$+$\overrightarrow{PB}$;  
③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;  
④0•$\overrightarrow{AB}$=0.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案