分析 (1)求出函数的导数,根据函数的单调性,得到-1,2是关于导函数的方程的根,代入求出a,b的值即可;
(2)问题转化为当且仅当x≥4时,x3-$\frac{5}{2}$x2-2x+c-5≥0,令h(x)=x3-$\frac{5}{2}$x2-2x+c-5,根据函数的单调性求出c的值,从而求出f(x)的表达式.
解答 解:(1)f′(x)=3x2+2ax+b,
∵三次函数f(x)=x3+ax2+bx+c在(-∞,-1),(2,+∞)上增加的,在(-1,2)上是减少,
∴-1,2是方程3x2+2ax+b=0的根,
∴$\left\{\begin{array}{l}{3-2a+b=0}\\{12+4a+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=-6}\end{array}\right.$;
(2)由(1)得:f(x)=x3-$\frac{3}{2}$x2-6x+c,
当且仅当x≥4时,f(x)≥x2-4x+5,
即当且仅当x≥4时,x3-$\frac{5}{2}$x2-2x+c-5≥0,
令h(x)=x3-$\frac{5}{2}$x2-2x+c-5,
h′(x)=(3x+1)(x-2),
令h′(x)>0,解得:x>2或x<-$\frac{1}{3}$,
令h′(x)<0,解得:-$\frac{1}{3}$<x<2,
∴h(x)在[4,+∞)递增,
故只需h(4)=64-40-8-5+c=0,
解得:c=-11,
故f(x)=x3-$\frac{3}{2}$x2-6x-11.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若σ⊥β,σ∩β=m,n⊥m,则n⊥σ或n⊥β | |
| B. | 若m不垂直于σ,则m不可能垂直于σ内的无数条直线 | |
| C. | 若σ∩β=m,m∥n,且n?σ,n?β,则n∥σ且n∥β | |
| D. | 若σ⊥β,m∥n,n⊥β,则m∥σ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1” | |
| B. | 命题“?x0∈R,x02>1”的否定是“?x∈R,x2>1” | |
| C. | 命题“x≤1是x2+2x-3≤0的必要不充分条件”为假命题 | |
| D. | 命题“若x=y,则cosx=cosy”的逆命题为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com