精英家教网 > 高中数学 > 题目详情
2.如图所示,⊙O1与⊙O2外切于点P,从⊙O1上点A作的切线AB,切点为B,连AP(不过O1)并延长与⊙O2交于点C.
(1)求证:AO1∥CO2
(2)若$\frac{AC}{AB}=\frac{{\sqrt{6}}}{2}$,求⊙O1的半径与⊙O2的半径之比.

分析 (1)利用等腰三角形的性质,证明角相等,即可证明:AO1∥CO2
(2)由切割线定理得出AP=2PC,由(1)可得△O1AP∽△O2CP,即可求⊙O1的半径与⊙O2的半径之比.

解答 (1)证明:连接O1O2,则O1O2过点P,
∴∠O1PA=∠O2PC
∵∠O1PA=∠O1AP,∠O2PC=∠O2CP,
∴∠O1AP=∠O2CP
∴AO1∥CO2
(2)解:设AB=2t,AC=$\sqrt{6}$t,
由切割线定理可得AB2=AP•AC,
∴AP=$\frac{A{B}^{2}}{AC}$=$\frac{2\sqrt{6}}{3}$t,PC=$\frac{\sqrt{6}}{3}$t,
∴AP=2PC,
由(1)可得△O1AP∽△O2CP,
∴$\frac{A{O}_{1}}{C{O}_{2}}$=$\frac{AP}{PC}$=2,
∴⊙O1的半径与⊙O2的半径之比为2:1.

点评 本题考查等腰三角形的性质,考查切割线定理的运用,考查三角形相似的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知圆O:x2+y2=4,圆M:(x-8)2+(y-6)2=4,在圆M上任取一点P,向圆O作切线PA,PB,切点为A,B,则$\overrightarrow{OA}•\overrightarrow{OB}$的最大值为(  )
A.$-\frac{5}{2}$B.$-\frac{9}{2}$C.$\frac{3}{2}$D.$-\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=2sinx,下列说法正确的是(  )
A.f(x)为奇函数,值域为$[\frac{1}{2},2]$B.f(x)为偶函数,值域为[1,2]
C.f(x)为非奇非偶函数,值域为$[\frac{1}{2},2]$D.f(x)为非奇非偶函数,值域为[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知三次函数f(x)=x3+ax2+bx+c在(-∞,-1),(2,+∞)上增加的,在(-1,2)上是减少的递减.
(1)求a,b的值;
(2)当且仅当x≥4时,f(x)≥x2-4x+5,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=||x|-1|.
(Ⅰ)求不等式f(x)≤3的解集A;
(Ⅱ)当m,n∈A时,证明:4|m+n|≤|mn+16|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为(  )
A.ρcosθ+ρsinθ=2B.ρcosθ-ρsinθ=2C.ρcosθ+ρsinθ=$\sqrt{2}$D.ρcosθ-ρsinθ=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{2}$sin(2x-π)cos[2(x+π)]是奇函数(奇偶性)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在        进位制中,十进位制数67,记为47(  )
A.8B.9C.11D.15

查看答案和解析>>

同步练习册答案