| A. | 一个圆 | B. | 两条射线或一个圆 | ||
| C. | 两条直线 | D. | 一条射线或一个圆 |
分析 极坐标方程ρcosθ=sin2θ(θ≥0),即ρcosθ=2sinθcosθ,可得cosθ=0,或ρ2=2ρsinθ,化为:θ=$kπ+\frac{π}{2}$(k∈N),x2+y2=2y,即可判断出结论.
解答 解:极坐标方程ρcosθ=sin2θ(θ≥0),即ρcosθ=2sinθcosθ,
∴cosθ=0,或ρ=2sinθ,即ρ2=2ρsinθ,
可得:θ=$kπ+\frac{π}{2}$(k∈N),x2+y2=2y,配方为x2+(y-1)2=1.
∴极坐标方程ρcosθ=sin2θ(θ≥0)表示的曲线是y轴或以(0,1)为圆心,1为半径的圆.
故选:B.
点评 本题考查了极坐标方程化为直角坐标方程、倍角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 9 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | B. | $\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}•\overrightarrow{n}|}$ | C. | -$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$ | D. | 以上都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com