【题目】已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,平均数为10.若要使该总体的方差最小,则a、b的取值分别是 .
【答案】a=10.5,b=10.5
【解析】解:这10个数的中位数为 =10.5.
这10个数的平均数为10.
要使总体方差最小,
即(a﹣10)2+(b﹣10)2最小.
又∵(a﹣10)2+(b﹣10)2=(21﹣b﹣10)2+(b﹣10)2
=(11﹣b)2+(b﹣10)2=2b2﹣42b+221,
∴当b=10.5时,(a﹣10)2+(b﹣10)2取得最小值.
又∵a+b=21,
∴a=10.5,b=10.5.
所以答案是:a=10.5,b=10.5
【考点精析】本题主要考查了平均数、中位数、众数和极差、方差与标准差的相关知识点,需要掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据;标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)当a=7时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点D是椭圆C: =1(a>b>0)上一点,F1 , F2分别为C的左、右焦点,|F1F2|=2 ,∠F1DF2=60°,△F1DF2的面积为
(1)求椭圆C的方程;
(2)过点Q(1,0)的直线l与椭圆C相交于A,B两点,点P(4,3),记直线PA,PB的斜率分别为k1 , k2 , 当k1k2最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)判断函数f(x)的奇偶性,并说明理由;
(2)证明:f(x)在(﹣1,+∞)上为增函数;
(3)证明:方程f(x)=0没有负数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在等差数列{an}中,Sn为其前n项和,a2=2,S5=15;等比数列{bn}的前n项和 .
( I)求数列{an},{bn}的通项公式;
( II)设cn=anbn , 求数列{cn}的前n项和Cn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左顶点为A(﹣2,0),离心率为 ,过点A的直线l与椭圆E交于另一点B,点C为y轴上的一点.
(1)求椭圆E的标准方程;
(2)若△ABC是以点C为直角顶点的等腰直角三角形,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com