精英家教网 > 高中数学 > 题目详情

(本小题满分12分).已知幂函数的图象关于轴对称,且在区间上是减函数,
(1)求函数的解析式;((2)若,比较的大小;

(1)  
(2) 当时,
时,
时,

解析试题分析:(1)∵幂函数在区间上是减函数,
,而,∴只能取0,1或2,
又幂函数的图象关于轴对称,即为偶函数,
,   故
(2)由(1)知,
时,
时,
时,
考点:幂函数的性质
点评:解决的关键是根据幂函数关于y轴对称说明是偶函数,同时能结合解析式以及底数的范围讨论得到大小关系,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数满足下列条件:
①当时, 的最小值为0,且恒成立;
②当时,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商家有一种商品,成本费为a 元,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,试就 a的取值说明这种商品是月初售出好,还是月末售出好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在的函数,对任意的,都有,且当时,.
(1)证明:当时,
(2)判断函数的单调性并加以证明;
(3)如果对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某公园计划建造一个室内面积为800m2的矩形花卉温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道。沿前侧内墙保留3m宽的空地,中间矩形内种植花卉.当矩形温室的边长各为多少时,花卉的种植面积最大?最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ//BC,RQBC。另外的内部有一文物保护区不能占用,经测量AB="100m," BC="80m," AE="30m," AF=20m,应如何设计才能使草坪的占地面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

建造一间占 地面积为12m²的背面靠墙的猪圈,底面为长方形,猪圈正面的造价为每平方米12元,侧面的造价为每平方米80元,屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问:如何设计能使猪圈的总 造价最低?最低总造价是多少?

查看答案和解析>>

同步练习册答案