精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在甲、乙等7个选手参加的一次演讲比赛中,采用抽签的方式随机确定每个选手的演出顺序(序号为1,2,……7),求:
(1)甲、乙两个选手的演出序号至少有一个为奇数的概率;
(2)甲、乙两选手之间的演讲选手个数的分布列与期望.
解:(1)设表示“甲、乙的演出序号至少有一个为奇数”,则 表示 “甲、乙的演出序号均为偶数”.由等可能性事件的概率计算公式得
.…………4分
(2)的可能取值为,…………5分
    
  …………8分
从而的分布列为

0
1
2
3
4
5







…………10分
所以,. …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

.随机变量ξ~B(100,0.2),那么D(4ξ+3)的值为                            (  )
A.64B.256C.259D.320

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:用这3类不同的元件连接成系统,每个元件是否正常工作不受其他元件的影响,当元件正常工作和元件中至少有
一个正常工作时,系统就正常工作。如果元件
正常工作的概率分别为0.8、0.9、0.9则这个系统正常工作的概率为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正
确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分) 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.
(Ⅰ)根据频率分布直方图,求重量超过500 克的产品数量;
(Ⅱ)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量, 求Y的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一个盒子中有个球,其中2个球的标号是不同的偶数,其余n个球的标号是不同的奇数。甲乙两人同时从盒子中各取出2个球,若这4个球的标号之和为奇数,则甲胜;若这4个球的标号之和为偶数,则乙胜。规定:胜者得2分,负者得0分。
(I)当时,求甲的得分的分布列和期望;
(II)当乙胜概率为的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一次抗洪抢险中准备用射击的方法引爆从上游漂流而下的一个巨大汽油罐。已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆。每次射击是相互独立的,且命中的概率都是
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光停止射击,设射击次数为,求的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为,则为     (    )
A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若X的离散型随机变量,又若,则的值为   _______.

查看答案和解析>>

同步练习册答案